


已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简单线性规划,可行域上的最优解,作出不等式组表示的平面区域,问题1:x有无最大(小)值?,问题2:y有无最大(小)值?,问题3:2x+y有无最大(小)值?,此时Z=3,此时Z=12,Zmax=12Zmin=3,有关概念,由x,y的不等式(或方程)组成的不等式组称为x,y的约束条件。关于x,y的一次不等式或方程组成的不等式组称为x,y的线性约束条件。欲达到最大值或最小值所涉及的变量x,y的解析式称为目标函数。关于x,y的一次目标函数称为线性目标函数。求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。满足线性约束条件的解(x,y)称为可行解。所有可行解组成的集合称为可行域。使目标函数取得最大值或最小值的可行解称为最优解。,练习解下列线性规划问题:,1、求z=2x+y的最大值,使式中的x、y满足约束条件:,Zmin=-3,Zmax=3,解线性规划问题的步骤:,(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;,(3)求:通过解方程组求出最优解;,(4)答:作出答案。,(1)画:画出线性约束条件所表示的可行域;,结论:,1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。,2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义在y轴上的截距或其相反数。,讨论:,解线性规划问题的步骤:,(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;,(3)求:通过解方程组求出最优解;,(4)答:作出答案。,小结:,(1)画:画出线性约束条件所表示的可行域;,结论:,1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物化工设备课件:生物反应器设备绪论
- 2025年春季小学下册二年级语文(统编版)-《一匹出色的马》第2课时-教案
- 朱顶红嫁接后的种植方法
- 专线宽带续费通知函
- 外贸参展课件下载网站
- 双十一金融营销策略
- 数学乐学派模板
- 走进智慧课堂
- 北京大学交互式多媒体课件
- 《企业效益分配》课件
- 2025-2030中国船用导航雷达行业市场发展分析及发展趋势与投资前景研究报告
- 临床类面试真题及答案
- 矿山探矿证转让合同协议
- 离散数学中的网络科学研究-全面剖析
- 外包免责协议书模板
- ktv服务员合同协议书范本
- 广东省广州市2025届普通高中毕业班综合测试(二)物理试题(含答案)
- 2025-2030医疗设备器械行业市场发展分析及投资前景研究报告
- 护士执业资格考试资料2024
- 城投公司竞聘试题及答案
- 贵州省考试院2025年4月高三年级适应性考试历史试题及答案
评论
0/150
提交评论