已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,方程的根与函数的零点,.,问题提出,1.对于数学关系式:3x-6=0与y=3x-6它们的含义分别如何?,2.方程2x-3=0的根与函数y=2x-3的图象有什么关系?,3.我们如何对方程f(x)=0的根与函数y=f(x)的图象的关系作进一步阐述?,.,方程,x22x+1=0,x22x+3=0,y=x22x3,y=x22x+1,函数,函数的图象,方程的实数根,x1=1,x2=3,x1=x2=1,无实数根,(1,0)、(3,0),(1,0),无交点,x22x3=0,y=x22x+3,知识探究(一):方程的根与函数的零点,.,方程ax2+bx+c=0(a0)的根,函数y=ax2+bx+c(a0)的图象,判别式=b24ac,0,=0,0,函数的图象与x轴的交点,有两个相等的实数根x1=x2,没有实数根,(x1,0),(x2,0),(x1,0),没有交点,两个不相等的实数根x1、x2,.,对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。,函数零点的定义:,注意:零点指的是一个实数,.,函数y=f(x)有零点,方程f(x)=0有实数根,函数y=f(x)的图象与x轴有公共点.,.,课堂练习1:,利用函数图象判断下列方程有没有根,有几个根:,(1)x23x50;,(2)2x(x2)3;,(3)x24x4;,.,.,.,.,y=-x2-x+20;(2)y=x3-2x2-x+2,课堂练习2:,评注:求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。,求下列函数的零点:,.,0,1,2,3,4,5,-1,-2,1,2,3,4,5,-1,-2,-3,-4,x,y,探究,知识探究(二):函数零点存在性原理,.,思考1:如果函数y=f(x)在区间1,2上的图象是连续不断的一条曲线,那么在下列那种情况下,函数y=f(x)在区间(1,2)内一定有零点?(1)f(1)0,f(2)0;(2)f(1)0,f(2)0;(3)f(1)0,f(2)0;(4)f(1)0,f(2)0.,.,思考2:一般地,如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,那么在什么条件下,函数y=f(x)在区间(a,b)内一定有零点?,如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0时,函数y=f(x)在区间(a,b)内一定没有零点吗?,.,结论,.,课堂练习3:,.,2.函数y=f(x)在区间a,b上的图象是连续不断的曲线,且f(a)f(b)0,则函数y=f(x)在区间(a,b)内()A.至少有一个零点B.至多有一个零点C.只有一个零点D.有两个零点,课堂练习3:,.,2.函数y=f(x)在区间a,b上的图象是连续不断的曲线,且f(a)f(b)0,f(1)f(2)f(4)0,f(1)f(2)f(4)0,则下列命题正确的是(D)A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点,课堂练习3:,.,课堂小结,1.知识方面:零点的概念、求法、判定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水泥基防水工程施工方案详解
- 汽车制造厂车间生产调度方案
- 医院临床科室病历管理规范
- 钢结构施工现场安全技术措施
- 小学阶段语文考试试题类型及出题思路
- 五年级趣味作文素材与写作指导
- 企业文化塑造及实施操作手册
- 客户服务质量评估及改进工具集
- 企业部门人员高效协作在线协同工具
- 数据处理诚信承诺函(8篇)
- 2025大连机场招聘109人高频重点提升(共500题)附带答案详解
- 互联网信息审核员考试题及答案
- 《自身免疫性脑炎》课件
- 【MOOC】大学生心理健康-厦门大学 中国大学慕课MOOC答案
- 2025年高考英语外刊时文阅读训练专题25褪黑素在REM睡眠中的作用(学生版+解析)
- 快递突发事件应急预案(3篇)
- 光明乳业供应链管理
- 国开(河北)2024年秋《现代产权法律制度专题》形考作业1-4答案
- JTS-145-2-2013海港水文规范
- 教师校园网络安全培训
- 《HSK标准教程2》第4课课件
评论
0/150
提交评论