




已阅读5页,还剩98页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三篇动力学,理论力学,第12章动能定理,第12章动能定理,动能是物体因为运动而具有的机械能,它是作功的一种能力。动能定理描述质点系动能的变化与力作功之间的关系。,求解实际问题时,往往需要综合应用动量定理、动量矩定理和动能定理。,力的功,动能定理及其应用,结论与讨论,质点与质点系的动能,势能、机械能守恒定律,动力学普遍定理的综合应用,参考性例题,第12章动能定理,功率、功率方程、机械效率,力的功,力的功定义,变力Fi的元功,需要注意的是,一般情形下,元功并不是功函数的全微分,所以,一般不用dW表示元功,而是用W表示。W仅仅是Fidri的一种记号。,常力对直线运动质点所作的功:,力的功,力的功定义,变力Fi的元功,力Fi在其作用点的轨迹上从M1点到M2点所作的功:,重力的功,对于质点:,对于质点系:,力的功,几种常见力的功,其中:z1、z2分别是质点在初位置和末位置的z坐标,其中:zC1、zC2分别是质点系质心在初位置和末位置的z坐标,重力的功与路径无关。,弹性力的功,其中,1、2是弹簧初始位置和最终位置的变形量。,力的功,几种常见力的功,弹性力的功与路径无关。,定轴转动刚体上作用力的功,刚体以角速度绕定轴z转动,其上A点作用有力F,则,则力F的元功为,力F对轴z的矩,于是,力在刚体上由1转到2时所作的功为,定轴转动刚体上外力偶的功,若力偶矩矢量为M,则力偶所作之功为,其中Mz为力偶矩矢M在z轴上的投影,即力偶对转轴z的矩。,假设扭簧上的杆处于水平时扭簧未变形,且变形时在弹性范围之内。变形时扭簧作用于杆上的力对点O之矩为,其中k为扭簧的刚度系数(扭转单位角度所需要的力矩)。为扭簧的扭转角度。,思考题:扭转弹簧力矩的功?,力的功,当杆从角度1转到角度2时,扭转弹簧力矩所作的功为?,质点系的内力总是成对出现的,且等值、反向、共线。因此,质点系的内力对质点系的动量和动量矩没有影响。,事实上,在许多情形下,物体的运动是由内力作功而引起的。当然也有的内力确实不作功。,*人的行走和奔跑是腿的肌肉内力作功。,*所有的发动机从整体考虑,其内力都作功。,*机器中有相对滑动的两个零件之间的摩擦力是内力,作负功。,*有势力的内力作功,如系统内的弹簧力作功。,那么,质点系的内力对质点系作不作功呢?,刚体内任何两点间的距离始终保持不变,所以刚体的内力所作功之和恒等于零。,*刚体的内力不作功,*理想约束约束反力不做功,光滑的固定支承面、轴承、光滑的活动铰链、销钉和活动支座都是理想约束。理由是它们的约束力不作功或作功之和等于零。,柔性约束也是理想约束。因为它们只有在拉紧时才受力,这时与刚性杆一样,内力作功之和等于零。,*纯滚动时,滑动摩擦力(约束力)不作功,约束力不做功的约束称为理想约束,C*为瞬时速度中心,在这一瞬时C*点的速度为零。作用在C*点的摩擦力F所作元功为,理想约束的约束反力不做功,质点系的动能与刚体的动能,质点系的动能,刚体的动能,第12章动能定理,质点系的动能与刚体的动能,质点系的动能,物理学中对质点的动能的定义为,质点系的动能为质点系内各质点动能之和。,动能是度量质点系整体运动的另一物理量。动能是正标量,其数值与速度的大小有关,但与速度的方向无关。,设重物A、B的质量为mA=mB=m,三角块D的质量为m0,置于光滑地面上。圆轮C和绳的质量忽略不计。系统初始静止。,解:重物A、B的运动可以看成质点的运动,三角块D做平动,也可以看成质点的运动。开始运动后,系统的动能为,其中,质点系的动能与刚体的动能,质点系的动能例题1,求:当物块A以相对速度下落时系统的动能。,或者写成,质点系的动能与刚体的动能,质点系的动能例题1,?,质点系的动能与刚体的动能,质点系的动能例题1,注意到,系统水平方向上动量守恒,故有,怎样求vD(用vr表示vD)?,通过本例可以看出,确定系统动能时,注意以下几点是很重要的:,系统动能中所用的速度必须是绝对速度。,需要综合应用动量定理、动量矩定理与动能定理。,正确应用运动学知识,确定各部分的速度。,质点系的动能与刚体的动能,质点系的动能例题1,平移刚体的动能,刚体平移时,其上各点在同一瞬时具有相同的速度,并且都等于质心速度。因此,平移刚体的动能,上述结果表明,刚体平移时的动能,相当于将刚体的质量集中于质心时的动能。,质点系的动能与刚体的动能,刚体的动能,刚体以角速度绕定轴z转动时,其上点的速度为:,因此,定轴转动刚体的动能为,质点系的动能与刚体的动能,刚体的动能,定轴转动刚体的动能,其中为刚体对定轴z的转动惯量。,平面运动刚体的动能,等于随质心平动的动能与相对质心转动动能的和。,质点系的动能与刚体的动能,刚体的动能,平面运动刚体的动能,设P为平面运动刚体某瞬时的速度瞬心,则刚体的动能为:,质点系的动能与刚体的动能,刚体的动能,思考题:均质圆盘质量为m,在平面上做纯滚动,轮心速度为vo,求圆盘的动能?,问:若质量m集中在轮缘上,轮在平面上做纯滚动,轮心速度为vo,求轮的动能?,坦克或拖拉机履带单位长度质量为,轮的半径为r,轮轴之间的距离为d,履带前进的速度为v0。,求:全部履带的总动能。,质点系的动能与刚体的动能例题2,解:把履带看成一质点系,在C1C2上建立平动坐标系C1xy,则牵连运动为水平平移,牵连速度为v0。,相对运动为绕在两个作定轴转动圆轮上履带的运动。圆轮的角速度为v0/r,履带上各点的相对速度均为v0。,质点系的动能与刚体的动能例题2,因此,全部履带的总动能为:,解:质点系的动能等于系统跟随质心平移的动能与相对于质心平移系运动的动能之和。(柯尼希定理),质点系的动能与刚体的动能例题2,动能定理及其应用,质点系的动能定理,动能定理应用举例,第12章动能定理,质点的动能定理的微分形式:,质点的动能定理的积分形式:,动能定理及其应用,质点系的动能定理,质点系的动能定理的微分形式:,动能定理及其应用,质点系的动能定理,所有可以作功的力既包括外力,也包括内力;既包括主动力,也包括约束力。在理想约束系统中,只包括主动力(外力和内力)。,质点系的动能定理的积分形式:,动能定理及其应用,质点系的动能定理,均质圆轮A、B的质量均为m,半径均为R,轮A沿斜面作纯滚动,轮B作定轴转动,B处摩擦不计。物块C的质量也为m。A、B、C用无质量的绳相联,绳相对B轮无滑动。系统初始为静止状态。,试求:1当物块C下降高度为h时,轮A质心的速度以及轮B的角速度。2系统运动时,物块C的加速度。,动能定理及其应用,动能定理应用举例例题3,解:以整个系统为研究对象。,1运动分析,确定各部分的速度、角速度,写出系统的动能,注意到轮A作平面运动;轮B作定轴转动;物块C作平移。于是,系统的动能:,根据运动学分析,得到,动能定理及其应用,动能定理应用举例例题3,解:2.确定所有力的功:,3应用动能定理的积分形式:,由此解出,物块C的重力作正功,轮A的重力作负功,约束反力不作功。于是,所有力的总功为,动能定理及其应用,动能定理应用举例例题3,解:4确定物块C的加速度:,将下降高度h视为变量,其对时间的一阶导数即为物块C的速度,因为物块C作直线平移,故有,于是,物块C的加速度为,动能定理及其应用,动能定理应用举例例题3,根据动能定理的微分形式,力的功率由下式计算,作用在转动刚体上力的功率为,功率方程、机械效率,第12章动能定理,可以得到,其中P为功率,上式称为功率方程:质点系动能对时间的一阶导数,等于作用于质点系的所有力的功率的代数和。,工程上,机器的功率分别有:输入功率、输出功率、损耗功率。其中:输出功率是对外作功的有用功率;损耗功率是摩擦、热能损耗等不可避免的无用功率。,功率方程、机械效率,第12章动能定理,这样,对机器而言,功率表达式可以改写为:,任何机器在工作时都需要从外界输入功率,同时也不可避免的要消耗一些功率,消耗越少则机器性能越好。工程上,定义机械效率为,这是衡量机器性能的指标之一。若机器有多级(假设为n级)传动,机械效率为,其中,功率方程、机械效率,第12章动能定理,均质圆轮A、B的质量均为m,半径均为R,轮A沿斜面作纯滚动,轮B作定轴转动,B处摩擦不计。物块C的质量也为m。A、B、C用轻绳相联,绳相对B轮无滑动。系统初始为静止状态。现在圆盘A的质心处加一不计质量的弹簧,弹簧刚度系数为k,求:系统的等效质量、等效刚度与系统的固有频率。,动能定理及其应用,动能定理应用举例例题4,以整个系统为研究对象,作功的力A、B轮的重力和弹簧的弹性力。,以物块C的位移x为广义坐标,静平衡位置取为坐标原点,系统的动能表达式为,动能定理及其应用,动能定理应用举例例题4,解:这是一个单自由度振动的刚体系统,现研究怎样将其简化为弹簧质量模型。,则动能表达式可以写为,作用在系统上的外力所作之功为,由于系统初始于静平衡状态,对轮A、轮B和物块C分别列出静平衡方程,整理后,有,动能定理及其应用,动能定理应用举例例题4,其中st为弹簧在系统静平衡时的伸长,根据质点系动能定理,有,动能定理及其应用,动能定理应用举例例题4,两边对时间求导,化成标准方程,于是,刚体系统便简化为一弹簧质量系统。其振动方程为,据此,系统的固有频率为,动能定理及其应用,动能定理应用举例例题4,即系统的等效质量为3m,等效刚度就是弹簧的刚度k,根据功率方程,有,动能定理及其应用,动能定理应用举例例题4,利用功率方程求解,作用于质点系各力的功率之和为,已求得,势能、机械能守恒定律,返回,返回总目录,第12章动能定理,有势力和势能,机械能守恒定律,有势力,如果作用在物体上的力所作之功仅与力作用点的起始位置和最终位置有关,而与其作用点所经过的路径无关(path-independent),这种力称为有势力或保守力(conservativeforce)。,势能、机械能守恒定律,重力、弹性力等都具有这一特征,因而都是有势力。,势能(potentialenergy),承受有势力作用的质点系,其势能的表达式为,其中M0为零势能位置,M为所要考察的任意位置。,势能是质点系从某位置运动到任选的零势能位置时,有势力所作的功。,势能、机械能守恒定律,由于零势位置(零势点)可以任选,所以,对于同一个所考察的位置的势能,将因零势位置(零势点)的不同而有不同的数值。,为了使分析和计算过程简便,对零势能位置(零势点)要加以适当的选择。,势能,势能、机械能守恒定律,例如对常见的弹簧质量系统,往往以其静平衡位置为零势能位置,这样可以使势能的表达式更简明。,有势力的功与势能的关系,根据势能的定义,可得到有势力的功和势能的关系,有势力所作的功等于质点系在运动过程起始位置与最终位置的势能差。,势能、机械能守恒定律,机械能守恒定律,质点系在某瞬时动能和势能的代数和称为机械能。,当作用在系统上的力均为有势力时,其机械能保持不变。这就是机械能守恒定律(theoremofconservationofmechanicalenergy)。,势能、机械能守恒定律,其中W12为非保守力的功。例如若系统上除了保守力外还有摩擦力,W12就是摩擦力的功。,事实上,在很多情形下,质点系会受到非保守力的作用,这时的系统称为非保守系统。在保守系统动能定理中加上一附加项,就可以得到机械能之间的相互关系,机械能守恒定律,势能、机械能守恒定律,动力学普遍定理的综合应用,返回,返回总目录,第12章动能定理,动力学普遍定理的综合应用,动量定理给出了质点系动量的变化与外力主矢之间的关系,可以用于求解质心运动或某些外力。,动量矩定理描述了质点系动量矩的变化与外力主矩之间的关系,可以用于具有转动特性的质点系,求解角加速度等运动量和外力。,动能定理建立了作功的力与质点系动能变化之间的关系,可用于复杂的质点系、刚体系求运动。,应用动量定理和动量矩定理的优点是不必考虑系统的内力。,应用动能定理的好处是理想约束力所作之功为零,因而不必考虑。,在很多情形下,需要综合应用这三个定理,才能问题的解答。正确分析问题的性质,灵活应用这些定理,往往会达到事半功倍的作用。,另外,这三个定理都存在不同形式的守恒形式,也要给予特别的重视。,动力学普遍定理的综合应用,例题5,均质圆轮A、B的质量均为m,半径均为R,轮A沿斜面作纯滚动,轮B作定轴转动,B处摩擦不计。物块C的质量也为m。A、B、C用无质量绳相联,绳相对B轮无滑动。系统初始为静止状态。,试求:1轮A、轮B之间的绳子拉力和B处的约束力;2轮A与地面的接触点处的摩擦力。,动力学普遍定理的综合应用,而,故有,取轮B和物块C组成的质点系为研究对象,分析受力,对点B应用动量矩定理,有,解:1确定绳子拉力本例的条件与例题2相同。在例题2中已经求得,例题5,动力学普遍定理的综合应用,解得,例题5,动力学普遍定理的综合应用,解:2确定B处的约束力,对图示系统应用质心运动定理,有,由此解得B处的约束力,例题5,动力学普遍定理的综合应用,解:3确定A轮与斜面之间的摩擦力,取轮A为研究对象,分析受力,应用相对质心的动量矩定理,得到,注意到,于是,得到摩擦力,例题5,动力学普遍定理的综合应用,本例小结:,本例中几乎应用了三个定理的所有主要形式。还可以发现,每种问题的解法都并不是唯一的。这说明,对于具体问题,必须进行具体分析,没有统一的方法可循。,例题5,动力学普遍定理的综合应用,均质细长杆长为l,质量为m,静止直立于光滑水平面上。杆受微小干扰而倒下。求:杆刚刚到达地面时的角速度和地面的约束力。,例题6,动力学普遍定理的综合应用,解:杆在水平方向不受外力,且由静止倒下,则在倒下过程中其质心将铅直下落。由运动学知,P为杆的瞬心。,例题6,动力学普遍定理的综合应用,A,杆刚到达地面时,A点成为杆的瞬心,杆的的动能为:,例题6,动力学普遍定理的综合应用,杆在滑倒过程中,只有重力作功。由动能定理,有,例题6,动力学普遍定理的综合应用,A,C,杆刚到达地面时,受力及加速度分析如图。,其中,其中,由运动学知,由刚体平面运动微分方程,得,例题6,动力学普遍定理的综合应用,其中,由运动学知,将加速度矢量式向铅垂方向投影,得,联立以上诸式,可以解得,均质杆长为l,质量为m1,B端靠在光滑墙上,A端用铰链与均质圆盘的质心相连。圆盘的质量为m2,半径为R,放在粗糙的地面上,自图示=45时由静止开始纯滚动。试求:A点在初瞬时的加速度。,例题7,动力学普遍定理的综合应用,解:以杆和圆轮组成的系统为研究对象。题中只有保守力作功,故机械能守恒,用机械能守恒定律求解。,注意到杆和圆盘质心到速度瞬心的距离恒定,则构件对瞬心的转动惯量为常数。,因此系统的动能为,例题7,动力学普遍定理的综合应用,因此系统的动能为,设轮心A的速度为vA,则有,取经过轮心A的水平线为零势位置,系统的势能为,例题7,动力学普遍定理的综合应用,根据机械能守恒定律,有,将上式对时间求一次导数,例题7,动力学普遍定理的综合应用,于是,点A在初瞬时的加速度为,注意到,初瞬时,例题7,动力学普遍定理的综合应用,解:以杆和圆轮组成的系统为研究对象。用动能定理求解。,系统的动能为,例题7,动力学普遍定理的综合应用,设轮心A的速度为vA,则有,代入系统的动能表达式,得,例题7,动力学普遍定理的综合应用,只有杆的重力对系统作功,根据动能定理,上式对时间求导,注意到,初瞬时,可解得,解:以杆和圆轮组成的系统为研究对象。用功率方程求解。,系统的动能为,例题7,动力学普遍定理的综合应用,设轮心A的速度为vA,则有,代入系统的动能表达式,得,例题7,动力学普遍定理的综合应用,只有杆的重力对系统作功,其功率为,根据功率方程,等式左边对时间求导,注意到,初瞬时,可解得,返回,返回总目录,第12章动能定理结论与讨论,运动学方程的重要性,关于动量和动能,关于几个动力学定理的综合应用,关于汽车驱动问题的结论,发动机给出的主动力偶克服阻力和阻力偶作功使汽车的动能增加;,与汽车行驶方向相同的摩擦力克服方向相反的摩擦力与空气的阻力使汽车的动量增加。,结论与讨论,1、关于动量和动能,关于汽车驱动问题的结论,如果路面很滑,摩擦力很小,发动机功率再大汽车也只能打滑,而不能向前行驶;,结论与讨论,1、关于动量和动能,反之,如果路面很粗糙,摩擦力可以很大,而发动机不能发出足够大的功率,汽车同样不能向前行驶。,在动量、动量矩、动能定理的应用中,运动学方程起着非常重要的作用。很多情形下,动力学关系非常容易得到,但运动学关系却很复杂。参看下例。,结论与讨论,3、运动学方程的重要性,均质杆AB重W,A、B处均为光滑面约束,杆从铅垂位置无初速下滑。求:图示位置时A、B二处的约束力。,分析:为了确定约束力,可以采用质心运动定理。,W,结论与讨论,3、运动学方程的重要性,关键是质心加速度如何确定?,可以写出杆AB质心的坐标公式,然后求导数,表达出质心的加速度,结论与讨论,3、运动学方程的重要性,方法1:,方法2:杆端A和B的加速度方向已知,分别取其为基点,可得,加速度一旦确定,其余问题便迎刃而解。,以A为基点,以B为基点,结论与讨论,3、运动学方程的重要性,注意到方向铅垂向下,方向水平向右,将上式分别向x、y方向投影,问题是角速度、角加速度如何确定?,由于约束力FNA、FNB的作用线均通过杆的速度瞬心,所以,可以采用相对瞬心的动量矩定理,很容易确定杆的角加速度。将看成变量,对积分可求得角速度。,结论与讨论,3、运动学方程的重要性,也可以由动能定理,很容易地求得角速度,进而可以求出杆的角加速度。,确定速度和角速度的方法,点的运动学分析方法选择合适的描述点的运动坐标系,写出的运动方程或方程组,再将方程或方程组对时间求一次导数,即得点的速度。,点的复合运动分析方法正确选择动点和动系,确定牵连速度、相对速度和绝对速度。,刚体平面运动分析方法建立在速度合成定理基础上的基点法、速度投影法、瞬时速度中心法。,结论与讨论,3、运动学方程的重要性,动量定理、动量矩定理和动能定理的比较,动量定理、动量矩定理和动能定理都是描述质点系整体运动的变化与质点系所受的作用力之间的关系。,动量定理、动量矩定理和动能定理都可以用于求解动力学的两类基本问题。,结论与讨论,4、几个动力学定理的综合应用,动量定理、动量矩定理一般限于研究物体机械运动范围内的运动变化问题。,动能定理可以用于研究机械运动与其他运动形式之间的运动转化问题。,结论与讨论,4、几个动力学定理的综合应用,动量定理、动量矩定理和动能定理的比较,动量定理、动量矩定理的表达式中含有时间参数。,动能定理的表达式中含有路程参数。,结论与讨论,4、几个动力学定理的综合应用,动量定理、动量矩定理和动能定理的比较,动量定理、动量矩定理的表达式为矢量形式,描述质点系整体运动时,不仅涉及有关运动量的大小,而且涉及运动量的方向。,动能定理的表达式为标量形式,描述质点系整体运动时,不涉及运动量的方向,无论质点系如何运动,动能定理只能提供一个方程。,结论与讨论,4、几个动力学定理的综合应用,动量定理、动量矩定理和动能定理的比较,动量定理、动量矩定理的表达式中只包含外力,而不包含内力(内力的主矢和主矩均为零),动能定理的表达式中可以包含主动力和约束力,主动力中可以是外力,也可以是内力(可变质点系);对于理想约束,则只包含主动力。,结论与讨论,4、几个动力学定理的综合应用,动量定理、动量矩定理和动能定理的比较,分析和解决复杂系统的动力学问题时,选择哪一个定理的原则是:,1、所要求的运动量在所选择的定理中能比较容易地表达出来;,2、在所选择的定理表达式中,不出现不必要求的相关未知力。,结论与讨论,4、几个动力学定理的综合应用,动量定理、动量矩定理和动能定理的比较,对于由多个刚体组成的复杂系统,如果选用动量定理或动量矩定理,需要将系统拆开,不仅涉及的方程数目比较多,而且会涉及求解联立方程。,动量定理、动量矩定理和动能定理的比较,如果选用动能定理,对于受理想约束的系统,可以不必将系统拆开,而直接对系统整体应用动能定理,建立一个标量方程,求得速度或加速度(角速度或角加速度)。,结论与讨论,4、几个动力学定理的综合应用,已知滑块A的质量为m1,质点B的质量为m2,AB杆的长度为l、不计质量,可以绕A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时装店入门知识培训方案课件
- 合同管理模板包含风险评估与条款审查功能
- 蓝色科技人工智能日常运用
- 人教版三年级上册第六单元6.1.2《几分之几》课时练(含答案)
- 绿色简约手绘环保公益讲座
- 商业照明设计与安装合同书
- 如何理解诗经中的情感表达:高中诗歌教学计划
- 纪念白求恩李红玲课件
- 企业品牌推广与宣传方案制作工具包
- 2025年软件测试设计师全国计算机技术与软件专业技术资格(水平)考试试卷
- 定向增发业务培训
- 2025年内河船员考试(船舶辅机与电气2203·一类三管轮)历年参考题库含答案详解(5套)
- 农村土地确权课件
- 餐饮店长转正汇报
- 2025年贵州省中考语文试卷(含答案与解析)
- 2025年昆山校医考试题库
- 2024年黔西南州畅达交通建设运输有限责任公司招聘考试真题
- 2025年云南高考历史试卷解读及备考策略指导课件
- 2025至2030中国纤维素纳米纤维(CNF)行业项目调研及市场前景预测评估报告
- (高清版)T∕CES 243-2023 《构网型储能系统并网技术规范》
- 公共场所卫生管理员安全教育培训手册
评论
0/150
提交评论