




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.5.3定积分的概念,.,定积分的概念,内容:,应用,求定积分,利用定积分求不规则图形的面积,定积分的几何意义,.,用“以直代曲”解决问题的思想和具体操作过程:,分割,以曲代直,作和,逼近,.,求由连续曲线y=f(x)对应的曲边梯形面积的方法:,(2)以直代曲:任取xixi-1,xi,第i个小曲边梯形的面积用高为f(xi),宽为Dx的小矩形面积f(xi)Dx近似地去代替.,(4)逼近:所求曲边梯形的面积S为,(3)作和:取n个小矩形面积的和作为曲边梯形面积S的近似值:,xi-1,xi,xi,(1)分割:在区间a,b上等间隔地插入n-1个点,将它等分成n个小区间:每个小区间宽度x,.,如果当n+时,Sn就无限接近于某个常数,,这个常数为函数f(x)在区间a,b上的定积分,记作:,从求曲边梯形面积S的过程中可以看出,通过“四个步骤”:分割-以直代曲-求和-逼近.,.,1.曲边梯形面积问题;2.变力作功问题;3.变速运动的距离问题.,我们把这些问题从具体的问题中抽象出来,作为一个数学概念提出来就是今天要讲的定积分。由此我们可以给定积分的定义,它们都归结为:分割、近似求和、取逼近值,问题情境:,.,定积分的定义,一般地,设函数f(x)在区间a,b上有定义,将区间a,b等分成n个小区间,每个小区的长度为,在每个小区间上取一点,依次为x1,x2,.xi,.xn,作和如果无限趋近于0时,Sn无限趋近于常数S,那么称常数S为函数f(x)在区间a,b上的定积分,记作:.,.,定积分的相关名称:叫做积分号,f(x)dx叫做被积表达式,f(x)叫做被积函数,x叫做积分变量,a叫做积分下限,b叫做积分上限,a,b叫做积分区间。,积分下限,积分上限,.,按定积分的定义,有:(1)由连续曲线y=f(x)(f(x)0),直线x=a、x=b及x轴所围成的曲边梯形的面积为,(2)设物体运动的速度v=v(t),则此物体在时间区间a,b内运动的距离s为,(3)设物体在变力F=F(r)的方向上有位移,则F在位移区间a,b内所做的功W为,.,注:定积分数值只与被积函数及积分区间a,b有关,与积分变量记号无关,.,函数在区间a,b上的定积分能否为负的?,定积分,定积分=.,.,定积分的几何意义,当f(x)0,定积分的几何意义就是,曲线y=f(x),直线x=a、x=b、y=0所围成的曲边梯形的面积,.,当函数f(x)0,xa,b时定积分几何意义,就是位于x轴下方的曲边梯形面积的相反数.,.,用定积分表示下列阴影部分面积:,S=_;,S=_;,S=_;,.,.,定积分的几何意义:,在区间a,b上曲线与x轴所围成图形面积的代数和(即x轴上方的面积减去x轴下方的面积).,.,例1:计算下列定积分.,求定积分,只要理解被积函数和定积分的意义,并作出图形,即可解决.,.,定积分的基本性质,性质1.,性质2.,.,定积分关于积分区间具有可加性,性质3.,.,例2.用定积分表示图中四个阴影部分面积,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,f(x)=x2,f(x)=x2,-1,2,f(x)=1,a,b,-1,2,f(x)=(x-1)2-1,.,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,.,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,.,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,.,例3.,解:,x,y,f(x)=sinx,1,-1,.,定积分的实质:特殊和式的逼近值,2定积分的思想和方法:,求近似以直(不变)代曲(变),取逼近,3.定积分的几何意义及简单应用,.,1.利用定积分的几何意义,判断下列定积分值的正、负号.,利用定积分的几何意义,说明下列各式.成立:,1),2).,1),2).,试用定积分表示下列各图中影阴部分的面积.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 印度军力教学课件
- 乍浦小学口试题目及答案
- 广告设计师证书考试用户反馈分析试题及答案
- 助理广告师活动策划能力试题及答案
- 愚人节起源和发展-英文版
- 比熊犬智商测试题及答案
- 简易气压计试题及答案
- 甲状腺考试题目及答案
- 2024年设计师考试专业知识试题及答案
- 广西高考一模试题及答案
- 矿山尾矿购销合同
- T-CACM 1212-2019 中医妇科临床诊疗指南 产后小便不通
- 化学(三)-2024年中考考前20天终极冲刺攻略(原卷版)
- 高热的中医护理
- 影音室安装协议合同
- 部门工作目标管理制度
- 【大单元教学】第三单元《幸福一家人》单元整体设计(含教学评价)
- 镀锡铜合金线总体规模、主要生产商、主要地区、产品和应用细分研究报告
- 2025年04月中国热带农业科学院橡胶研究所第一批公开招聘16人(第1号)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025-2030中国玻璃纤维混凝土行业市场发展趋势与前景展望战略研究报告
- 农产品跨境贸易合作协议方案书
评论
0/150
提交评论