




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019全国各地中考数学压轴大题几何综合8、 规律探索综合题1.(2019十堰)如图1,ABC中,CACB,ACB,D为ABC内一点,将CAD绕点C按逆时针方向旋转角得到CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上(1)填空:CDE(用含的代数式表示);(2)如图2,若60,请补全图形,再过点C作CFAE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若90,AC5,且点G满足AGB90,BG6,直接写出点C到AG的距离解:(1)将CAD绕点C按逆时针方向旋转角得到CBEACDBCE,DCECDCECDE故答案为:(2)AEBE+CF理由如下:如图,将CAD绕点C按逆时针方向旋转角60得到CBEACDBCEADBE,CDCE,DCE60CDE是等边三角形,且CFDEDFEFAEAD+DF+EFAEBE+CF(3)如图,当点G在AB上方时,过点C作CEAG于点E,ACB90,ACBC5,CABABC45,AB10ACB90AGB点C,点G,点B,点A四点共圆AGCABC45,且CEAGAGCECG45CEGEAB10,GB6,AGB90AG8AC2AE2+CE2,(5)2(8CE)2+CE2,CE7(不合题意舍去),CE1若点G在AB的下方,过点C作CFAG,同理可得:CF7点C到AG的距离为1或72.(2019宜昌)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O(1)填空:点A在(填“在”或“不在”)O上;当时,tanAEF的值是;(2)如图1,在EFH中,当FEFH时,求证:ADAE+DH;(3)如图2,当EFH的顶点F是边AD的中点时,求证:EHAE+DH;(4)如图3,点M在线段FH的延长线上,若FMFE,连接EM交DC于点N,连接FN,当AEAD时,FN4,HN3,求tanAEF的值解:(1)连接AO,EAF90,O为EF中点,AOEF,点A在O上,当时,AEF45,tanAEFtan451,故答案为:在,1;(2)EFFH,EFH90,在矩形ABCD中,AD90,AEF+AFE90,AFE+DFH90,AEFDFH,又FEFH,AEFDFH(AAS),AFDH,AEDF,ADAF+DFAE+DH;(3)延长EF交HD的延长线于点G,F分别是边AD上的中点,AFDF,AFDG90,AFEDFG,AEFDGF(ASA),AEDG,EFFG,EFFH,EHGH,GHDH+DGDH+AE,EHAE+DH;(4)过点M作MQAD于点Q设AFx,AEa,FMFEEFFH,EFM为等腰直角三角形,FEMFMN45,FMFE,AMQF90,AEFMFQ,AEFQFM(ASA),AEEQa,AFQM,AEAD,AFDQQMx,DCQM,DCABQM,FEFM,FEMFMN45,FENHMN,3.(2019襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQAE于点O,点G,F分别在边CD,AB上,GFAE求证:DQAE;推断:的值为1;(2)类比探究:如图(2),在矩形ABCD中,k(k为常数)将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k时,若tanCGP,GF2,求CP的长(1)证明:四边形ABCD是正方形,ABDA,ABE90DAQQAO+OAD90AEDH,ADO+OAD90QAOADOABEDAQ(ASA),AEDQ解:结论:1理由:DQAE,FGAE,DQFG,FQDG,四边形DQFG是平行四边形,FGDQ,AEDQ,FGAE,1故答案为1(2)解:结论:k理由:如图2中,作GMAB于MAEGF,AOFGMFABE90,BAE+AFO90,AFO+FGM90,BAEFGM,ABEGMF,AMGDDAM90,四边形AMGD是矩形,GMAD,k(3)解:如图21中,作PMBC交BC的延长线于MFBGC,FEGP,CGPBFE,tanCGPtanBFE,可以假设BE3k,BF4k,EFAF5k,FG2,AE3,(3k)2+(9k)2(3)2,K1或1(舍弃),BE3,AB9,BC:AB2:3,BC6,BECE3,ADPEBC6,BEFFEPPME90,FEB+PEM90,PEM+EPM90,FEBEPM,FBEEMP,EM,PM,CMEMEC3,PC4.(2019天门)已知ABC内接于O,BAC的平分线交O于点D,连接DB,DC(1)如图,当BAC120时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+ACAD;(2)如图,当BAC90时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图,若BC5,BD4,求的值解:(1)如图在AD上截取AEAB,连接BE,BAC120,BAC的平分线交O于点D,DBCDAC60,DCBBAD60,ABE和BCD都是等边三角形,DBEABC,ABBE,BCBD,BEDBAC(SAS),DEAC,ADAE+DEAB+AC;故答案为:AB+ACAD(2)AB+ACAD理由如下:如图,延长AB至点M,使BMAC,连接DM,四边形ABDC内接于圆O,MBD=ACD,BAD=CAD=45,BD=CD,MBDACD(SAS),MD=AD,M=ACD=45,MDADAM,即AB+BM,AB+AC;(3)如图,延长AB至点N,使BNAC,连接DN,四边形ABDC内接于O,NBDACD,BADCAD,BDCD,NBDACD(SAS),NDAD,NCAD,NNADDBCDCB,NADCBD,又ANAB+BNAB+AC,BC5,BD4,5.(2019岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C处点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN(1)如图1,求证:BEBF;(2)特例感知:如图2,若DE5,CF2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DEa,CFb如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系(不要求写证明过程)(1)证明:如图1中,四边形ABCD是矩形,ADBC,DEFEFB,由翻折可知:DEFBEF,BEFEFB,BEBF(2)解:如图2中,连接BP,作EHBC于H,则四边形ABHE是矩形,EHABDEEBBF5,CF2,ADBC7,AE2,在RtABE中,A90,BE5,AE2,AB,SBEFSPBE+SPBF,PMBE,PNBF,BFEHBEPM+BFPN,BEBF,PM+PNEH,四边形PMQN是平行四边形,四边形PMQN的周长2(PM+PN)2(3)证明:如图3中,连接BP,作EHBC于HEDEBBFa,CFb,ADBCa+b,AEADDEb,EHAB,SEBPSBFPSEBF,BEPMBFPNBFEH,BEBF,PMPNEH,四边形PMQN是平行四边形,QNQM(PMPN)如图4,当点P在线段FE的延长线上运动时,同法可证:QMQNPNPM6.(2019常德)在等腰三角形ABC中,ABAC,作CMAB交AB于点M,BNAC交AC于点N(1)在图1中,求证:BMCCNB;(2)在图2中的线段CB上取一动点P,过P作PEAB交CM于点E,作PFAC交BN于点F,求证:PE+PFBM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PEAB交CM的延长线于点E,作PFAC交NB的延长线于点F,求证:AMPF+OMBNAMPE证明:(1)ABAC,ABCACB,CMAB,BNAC,BMCCNB90,在BMC和CNB中,BMCCNB(AAS);(2)BMCCNB,BMNC,PEAB,CEPCMB,PFAC,BFPBNC,+1,PE+PFBM;(3)同(2)的方法得到,PEPFBM,BMCCNB,MCBN,ANB90,MAC+ABN90,OMB90,MOB+ABN90,MACMOB,又AMCOMB90,AMCOMB,AMMBOMMC,AM(PEPF)OMBN,AMPF+OMBNAMPE7.(2019连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N判断线段DN、MB、EC之间的数量关系,并说明理由问题探究:在“问题情境”的基础上(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F求AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN沿着AN翻折,点P落在点P处,若正方形ABCD的边长为4,AD的中点为S,求PS的最小值问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边BC恰好经过点A,CN交AD于点F分别过点A、F作AGMN,FHMN,垂足分别为G、H若AG,请直接写出FH的长问题情境:解:线段DN、MB、EC之间的数量关系为:DN+MBEC;理由如下:四边形ABCD是正方形,ABEBCD90,ABBCCD,ABCD,过点B作BFMN分别交AE、CD于点G、F,如图1所示:四边形MBFN为平行四边形,NFMB,BFAE,BGE90,CBF+AEB90,BAE+AEB90,CBFBAE,在ABE和BCF中,ABEBCF(ASA),BECF,DN+NF+CFBE+EC,DN+MBEC;问题探究:解:(1)连接AQ,过点Q作HIAB,分别交AD、BC于点H、I,如图2所示:四边形ABCD是正方形,四边形ABIH为矩形,HIAD,HIBC,HIABAD,BD是正方形ABCD的对角线,BDA45,DHQ是等腰直角三角形,HDHQ,AHQI,MN是AE的垂直平分线,AQQE,在RtAHQ和RtQIE中,RtAHQRtQIE(HL),AQHQEI,AQH+EQI90,AQE90,AQE是等腰直角三角形,EAQAEQ45,即AEF45;(2)连接AC交BD于点O,如图3所示:则APN的直角顶点P在OB上运动,设点P与点B重合时,则点P与点D重合;设点P与点O重合时,则点P的落点为O,AOOD,AOD90,ODAADO45,当点P在线段BO上运动时,过点P作PGCD于点G,过点P作PHCD交CD延长线于点H,连接PC,点P在BD上,APPC,在APB和CPB中,APBCPB(SSS),BAPBCP,BCDMPA90,PCNAMP,ABCD,AMPPNC,PCNPNC,PCPN,APPN,PNA45,PNP90,PNH+PNG90,PNH+NPH90,PNG+NPG90,NPGPNH,PNGNPH,由翻折性质得:PNPN,在PGN和NHP中,PGNNHP(ASA),PGNH,GNPH,BD是正方形ABCD的对角线,PDG45,易得PGGD,GNDH,DHPH,PDH45,故PDA45,点P在线段DO上运动;过点S作SKDO,垂足为K,点S为AD的中点,DS2,则PS的最小值为;问题拓展:解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:则EGAG,PHFH,AE5,在RtABE中,BE3,CEBCBE1,BECQ90,AEBQEC,ABEQCE,3,QEAE,AQAE+QE,AGMN,AGM90B,MAGEAB,AGMABE,即,解得:AM,由折叠的性质得:ABEB3,BB90,CBCD90,BM,AC1,BAD90,BAMCFA,AFCMAB,解得:AF,DF4,AGMN,FHMN,AGFH,AQFP,DFPDAQ,即,解得:FP,FHFP 8.(2019威海)(1)方法选择如图,四边形ABCD是O的内接四边形,连接AC,BD,ABBCAC求证:BDAD+CD小颖认为可用截长法证明:在DB上截取DMAD,连接AM小军认为可用补短法证明:延长CD至点N,使得DNAD请你选择一种方法证明(2)类比探究【探究1】如图,四边形ABCD是O的内接四边形,连接AC,BD,BC是O的直径,ABAC试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论【探究2】如图,四边形ABCD是O的内接四边形,连接AC,BD若BC是O的直径,ABC30,则线段AD,BD,CD之间的等量关系式是BDCD+2AD(3)拓展猜想如图,四边形ABCD是O的内接四边形,连接AC,BD若BC是O的直径,BC:AC:ABa:b:c,则线段AD,BD,CD之间的等量关系式是BDCD+AD解:(1)方法选择:ABBCAC,ACB=ABC=60,如图,在BD上截取DM=AD,连接AM,ADB=ACB=60,ADM为等边三角形,AM=AD,ABM=ACD,AMB=ADC=120,ABMACD(AAS),BM=CD,BD=BM+DM=CD+AD;(2)类比探究:如图,BC是O的直径,BAC90,ABAC,ABCACB45,过A作AMAD交BD于M,ADBACB45,ADM是等腰直角三角形,AMAD,AMD45,DMAD,AMBADC135,ABMACD,ABMACD(AAS),BMCD,BDBM+DMCD+AD;【探究2】如图,若BC是O的直径,ABC30,BAC90,ACB60,过A作AMAD交BD于M,ADBACB60,AMD30,MD2AD,ABDACD,AMBADC150,ABMACD,BMCD,BDBM+DMCD+2AD;故答案为:BDCD+2AD;(3)拓展猜想:BDBM+DMCD+AD;理由:如图,若BC是O的直径,BAC90,过A作AMAD交BD于M,MAD90,BAMDAC,ABMACD,BMCD,ADBACB,BACNAD90,ADMACB,DMAD,BDBM+DMCD+AD故答案为:BDCD+AD 9.(2019丹东)已知:在ABC外分别以AB,AC为边作AEB与AFC(1)如图1,AEB与AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF以EF为直角边构造RtEFG,且EFFG,连接BG,CG,EC求证:AEFCGF四边形BGCE是平行四边形(2)小明受到图1的启发做了进一步探究:如图2,在ABC外分别以AB,AC为斜边作RtAEB与RtAFC,并使FACEAB30,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及DEF的度数(3)小颖受到启发也做了探究:如图3,在ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使CAF+EAB90,取BC的中点D,连接DE,EF后发现,当给定EAB时,两者间也存在一定的数量关系且夹角度数一定,若AEm,ABn,请你帮助小颖用含m,n的代数式直接写出的值,并用含的代数式直接表示DEF的度数(1)证明:如图1中,EFC与AFC都是等腰直角三角形,FAFC,FEFG,AFCEFG90,AFECFG,AFECFG(SAS)AFECFG,AECG,AEFCGF,AEB是等腰直角三角形,AEBE,BEA90,CGBE,EFG是等腰直角三角形,FEGFGE45,AEF+BEG45,CGE+CGF45,BEGCGE,BECG,四边形BECG是平行四边形(2)解:如图2中,延长ED到G,使得DGED,连接CG,FG点D是BC的中点,BDCD,EDBGDC,EBGC,EBDGCD,在RtAEB与RtAFC中,EABFAC30,EBD2+60,DCG2+60,GCF36060(2+60)3360120(2+3)360120(1801)60+1,EAF30+1+3060+1,GCFEAF,CGFAEF,CFGAFE,EFGCFG+EFCAFE+EFC90,tanDEF,DEF30,FGEG,EDEG,EDFG,(3)如图3中,延长ED到G,使得DGED,连接CG,FG作EHAB于H,连接FDBDDC,BDECDG,DEDG,CDGBDE(SAS),CGBEAE,DCGDBE+ABC,G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钒铁熔化还原工三级安全教育(车间级)考核试卷及答案
- 药品经营企业计算机系统培训考试试题(含参考答案)
- 水解蒸馏工三级安全教育(班组级)考核试卷及答案
- 铁合金成品工入职考核试卷及答案
- 露天采煤机司机异常处理考核试卷及答案
- 中小学校世界读书日暨“校园读书节”活动实施方案
- 车辆通行费收费员基础考核试卷及答案
- 口腔院感和消毒专项培训试题(附答案)
- 重冶净液工基础知识考核试卷及答案
- 有色液固分离工上岗考核试卷及答案
- 发酵饲料培训课件
- 电信营业员的理论考试题及答案
- 2025年河北大学版(2024)小学信息科技三年级(全一册)教学设计(附目录 P179)
- 安保技能活动方案
- 殡仪服务站可行性研究报告
- 普通鱼缸买卖协议书
- T/CECS 10360-2024活毒污水处理装置
- 2026届高职单招考试大纲英语词汇(音标版)
- 临床护理文书书写规范课件
- 非法宗教班会课件
- 《电子商务基础(第二版)》课件 第六章 电子商务客户服务
评论
0/150
提交评论