空间向量与空间距离_第1页
空间向量与空间距离_第2页
空间向量与空间距离_第3页
空间向量与空间距离_第4页
空间向量与空间距离_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4课时空间向量与空间距离,a,l,a,复习回顾,l,A,B,A1,B1,A,B,B1,A1,M,1.会求直线的方向向量,平面的法向量.2.会利用向量求点到点、点到线、点到面的距离.(重点)3.会利用向量求线到线、线到面、面到面的距离.(重点),探究点1空间两点之间的距离,根据两向量数量积的性质和坐标运算,利用公式或(其中),可将两点距离问题转化为求向量模长问题.,探究1点到直线的距离,点P与直线l的距离为d,则,设E为平面外一点,F为内任意一点,为平面的法向量,则点E到平面的距离为:,探究2点到平面的距离,E,F,d,a,b是异面直线,E,F分别是直线a,b上的点,是a,b公垂线的方向向量,则a,b间距离为,探究3异面直线间的距离,a,b,E,F,d,M,探究4平面与平面的距离问题:,D,P,A,A,P分别是平面与上任意一点,平面与的距离为d,则,d,例1:如图1:一个结晶体的形状为四棱柱,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?,解:如图1,设,化为向量问题,依据向量的加法法则,,进行向量运算,所以,回到图形问题,这个晶体的对角线AC1的长是棱长的倍.,例2如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F.(1)求证:PA/平面EDB.(2)求证:PB平面EFD.,A,B,C,D,P,E,F,(3)求二面角C-PB-D的大小.,A,B,C,D,P,E,F,解:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1.,(1)证明:连接AC,AC交BD于点G,连接EG.,(3),例3如图,一块均匀的正三角形面的钢板所受重力为500N,在它的顶点处分别受力,每个力与同它相邻的三角形的两边之间的夹角都是60o,且.这块钢板在这些力的作用下将会怎样运动?这三个力最小为多大时,才能提起这块钢板?,分析:钢板所受重力的大小为500N,垂直向下作用在三角形的中心O,,如果能将各顶点处所受的力用向量形式表示,求出其合力,就能判断钢板的运动状态.,1.如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1的中点,求B1到面A1BE的距离.,A,B,C,C1,E,A1,B1,A,B,C,C1,取x=1,则y=-1,z=1,所以,E,A1,B1,利用向量求距离,1.点到平面的距离:连接该点与平面上任意一点的向量在平面定向法向量上的射影(如果不知道判断方向,可取其射影的绝对值).2.点到直线的距离:求出垂线段的向量的模.3.直线到平面的距离:可以转化为点到平面的距离.,4.平行与平面间的距离:转化为直线到平面的距离、点到平面的距离.5.异面直线间的距离:转化为直线到平面的距离、点到平面的距离.也可运用闭合曲线求公垂线向量的模或共线向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论