




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
运筹学,第五章动态规划,鲁衰邪碱联恰卉憋渭剖懈须捍朔悦洱朵惺骨广晤校聚涕宁奈豁敬旷腺猫渊5.2动态规划的最优性原理5.2动态规划的最优性原理,2动态规划的最优性原理,多阶段决策过程的特点是每个阶段都要进行决策,具有n个阶段的决策过程的策略是由n个相继进行的阶段决策构成的决策序列。由于前阶段的终止状态又是后一阶段的初始状态,因此确定阶段最优决策不能只从本阶段的效应出发,必须通盘考虑,整体规划。就是说,阶段k的最优决策不应只是本阶段的最优,而必须是本阶段及其所有后续阶段的总体最优,即关于整个后部子过程的最优决策。对此,贝尔曼在深入研究的基础上,针对具有无后效性的多阶段决策过程的特点,提出了著名的多阶段决策的最优性原理:“整个过程的最优策略具有这样的性质:即无论过程过去的状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。”简而言之,最优性原理的含意就是:最优策略的任何一部分子策略也必须是最优的。,在颜炎橇诧它陵垒闽枉裔堂举崩绍灌枣崇席狰腊潦磁馅卯醋浸阜酝范鸥躺5.2动态规划的最优性原理5.2动态规划的最优性原理,如例1,AB2C1D2E是由A到E的最短路线,我们在该路线上任取一点C1,按照最优性原理C1D2E应该是C1到E的最短路。很容易用反证法证明这一结论的正确性,从而说明最优性原理的正确性。按最优性原理,可以将例1分成ABCDE4个阶段,由后向前逐步求出各点到E的最短线路,直至求出A至E的最短线路。,K=4时,出发点有D1,D2,D3,记f4(Di)(i=1,2,3)为Di到E的最短距离;u4(Di)表示从状态Di出发采取的决策。显然:f4(D1)=7,u4(D1)=Ef4(D2)=8,u4(D2)=Ef4(D3)=6,u4(D3)=EK=3时,出发点有C1,C2,C3,f3(C1)=mind(C1D1)+f4(D1),d(C1D2)+f4(D2)=min4+7,2+8=10,u3(C1)=D2f3(C2)=mind(C2D2)+f4(D2),d(C2D3)+f4(D3)=min5+8,7+6=13,u3(C2)=D2或D3f3(C3)=mind(C3D2)+f4(D2),d(C3D3)+f4(D3)=min10+8,9+6=15,u3(C3)=D3,取测肃伊朱拟汗过惺椅呸谨篷芽咒刊窿勋绩侦昏仍醚综勾廓慷喳水额岩扛5.2动态规划的最优性原理5.2动态规划的最优性原理,K=2时,出发点有B1,B2,B3f2(B1)=mind(B1C1)+f3(C1),d(B1C2)+f3(C2)=min6+10,4+13=16,u2(B1)=C1f2(B2)=mind(B2C1)+f3(C1),d(B2C3)+f3(C3)=min3+10,1+15=13,u2(B2)=C1f2(B3)=mind(B3C2)+f3(C2),d(B3C3)+f3(C3)=min8+13,4+15=19,u2(B3)=C3K=1时,出发点只有Ad(AB1)+f2(B1)4+16f1(A)=mind(AB2)+f2(B2)=5+13=18,d(AB3)+f2(B3)3+19u1(A)=B2由f1(A)=18,可知从起点A到终点E的最短距离为18。,烂汗垃舒磨烽彪立硬崇技蔚瞅敛元卒韭但恒躬七橇杯贼睡蛰凛斋龋墩送衅5.2动态规划的最优性原理5.2动态规划的最优性原理,为了找出最短线路,再按计算顺序反推回去,可求出最优决策序列,即由u1(A)=B2,u2(B2)=C1,u3(C1)=D2,u4(D2)=E组成最优策略,也就是最短线路为:AB2C1D2E,从上面的例子不难看出,对于最短线路问题,有如下的递推关系(函数方程):fk(xk)=mind(xk,uk(xk))+fk+1(T(xk,uk))fn+1(xn+1)=0k=n,n-1,1,一般情况下,多阶段决策问题存在下面的递推关系:fk(xk)=optrk(xk,uk(xk)fk+1(T(xk,uk))ukDk(uk)fn+1(xn+1)=Ck=n,n-1,1这里rk(xk,uk(xk)是第阶段采用uk(xk)决策产生的阶段效应;fn+1(xn+1)=C是边界条件;“”号大多数情况下是“+”号,也可能是“”号。称上述递推关系为动态规划的基本方程,这个方程是最优化原理的具体表达形式。,彩泪世捅铸份倘符衷描独煎溃亩培困殉贺投姑篱怂良啦汛犬爪规脆很醒苫5.2动态规划的最优性原理5.2动态规划的最优性原理,在基本方程中,rk(xk,uk),xk+1=T(xk,uk)都是已知函数,最优子策略fk(xk)与fk+1(xk+1)之间是递推关系,要求出fk(xk)及uk(xk),需要先求出fk+1(xk+1),这就决定了应用动态规划基本方程求最优策略总是逆着阶段的顺序进行的。,另一方面,由于k+1阶段的状态xk+1=T(xk,uk)是由前面的状态和决策所形成的,在计算fk+1(xk+1)时还不能具体确定xk+1的,这就要求必须就k+1阶段的各个可能状态计算fk+1(xk+1),因此动态规划不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商州安全员考及答案
- 2025年康复医疗服务体系建设与康复康复护理服务市场分析报告
- 泰安龙潭小学施工方案
- 2025年西安中招英语真题及答案
- 骨科专业面试题目及答案
- DB65T 4348.5-2021 草地退化状况评价技术规范 第5部分:高寒草甸类
- 4 写生身边的风景说课稿-2025-2026学年小学美术沪教版四年级上册-沪教版
- DB65T 4480-2021 电梯困人应急处置导则
- 迪吧消防应急预案(3篇)
- 2025年质量综合知识题库及答案
- 2025至2030年中国猫砂行业发展监测及投资战略研究报告
- 2025年理赔人员上岗考试题库
- 2025年AI技术在项目管理中的应用洞察报告
- 荧光分析技术第二章荧光信号机制讲课文档
- 2025-2026年秋季学期各周国旗下讲话安排表+2025-2026学年上学期升旗仪式演讲主题安排表
- 2025年公务员(国考)之公共基础知识考试题库(带答案解析)
- 初级医学影像技术师考试试卷及答案2025年
- 幼儿园一日生活指引培训
- 中班健康运蔬菜喽
- 脑疝的观察与护理
- 2025年护理核心制度试题及答案
评论
0/150
提交评论