Ch2-3-4函数间断点_第1页
Ch2-3-4函数间断点_第2页
Ch2-3-4函数间断点_第3页
Ch2-3-4函数间断点_第4页
Ch2-3-4函数间断点_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四、函数的间断点及其分类,1.可去间断点,例1,解,注意可去间断点只要改变或者补充间断点处函数的定义,则可使其变为连续点.,2.跳跃间断点,例3,解,跳跃间断点与可去间断点统称为第一类间断点.,特点,3.第二类间断点,例4,解,例5,解,可去型,第一类间断点,跳跃型,无穷型,振荡型,第二类间断点,第一类间断点:可去型,跳跃型.,第二类间断点:无穷型,振荡型.,间断点,例6讨论函数,的间断点和连续区间.,解:,为第二类间断点(无穷间断点),为可去间断点,连续区间为:,注:,例7确定函数,间断点的类型.,解:间断点,为无穷间断点;,故,为跳跃间断点.,例8,五、闭区间上连续函数的性质,定义:,例如,定理(最值定理)在闭区间上连续的函数一定有最大值和最小值.,注意:1.若区间是开区间,定理不一定成立;2.若区间内有间断点,定理不一定成立.,1、最值定理,推论(有界性定理)在闭区间上连续的函数一定在该区间上有界.,证,定义:,2.介值定理与零点存在定理,几何解释:,几何解释:,例8,证,由零点存在定理,例9,证,由零存在点定理,例10,证,若,即,则,由零点定理,若,则,综合以上所述可得,,存在,使得,第一类间断点,可去间断点,跳跃间断点,左右极限都存在,第二类间断点,无穷间断点,振荡间断点,左右极限至少有一个不存在,在点,间断的类型,内容小结,2.设,则,上有界;,上达到最大值与最小值;,上可取最大与最小值之间的任何值;,(4)当,时,使,必存在,有无穷间断点,及可去间断点,解:,为无穷间断点,所以,为可去间断点,极限存在,练习:1.设函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论