高考数学总复习PPT课件-基本不等式及其应用_第1页
高考数学总复习PPT课件-基本不等式及其应用_第2页
高考数学总复习PPT课件-基本不等式及其应用_第3页
高考数学总复习PPT课件-基本不等式及其应用_第4页
高考数学总复习PPT课件-基本不等式及其应用_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基本不等式及其应用,回归课本:1.算术平均数如果a,bR+,那么叫做这两个正数的算术平均数.2.几何平均数如果a,bR+,那么叫做这两个正数的几何平均数.,3.重要不等式如果a,bR,则a2+b22ab(当且仅当a=b时,取“=”);均值定理:如果a,bR+,那么(当且仅当a=b时,取“=”).均值定理可以叙述为:两个正实数的算术平均数大于或等于它们的几何平均数.,5.已知x、y都是正数,则(1)若x+y=S(和为定值),则当x=y时,积xy取最大值(2)若xy=P(积为定值),则当x=y时,和x+y取得最小值即两个正数的和为定值,则可求其积的最大值;积为定值,则可求其和的最小值.应用此结论要注意三个条件;“一正二定三相等”,即:各项或各因式为正;和或积为定值;各项或各因式都能取得相等的值.,1.函数y=log2x+logx2的值域是()A.(-,-2B.2,+)C.-2,2D.(-,-22,+)答案:D,2.已知x+3y=2,则3x+27y的最小值为()答案:A,答案:C,答案:B,答案:D,【典例1】证明:a4+b4+c4a2b2+b2c2+c2a2abc(a+b+c).证明a4+b42a2b2,b4+c42b2c2,c4+a42c2a2,2(a4+b4+c4)2(a2b2+b2c2+c2a2),即a4+b4+c4a2b2+b2c2+c2a2,又a2b2+b2c22ab2c,b2c2+c2a22abc2,c2a2+a2b22a2bc,2(a2b2+b2c2+c2a2)2(ab2c+abc2+a2bc),即a2b2+b2c2+c2a2ab2c+abc2+a2bc=abc(a+b+c).即原命题可得证.,利用均值不等式解应用题:均值不等式作为求最值的常用工具,经常在有关最优解的实际问题中应用.应用均值不等式解决实际问题的基本步骤是:仔细阅读题目,透彻理解题意;分析实际问题中的数量关系,引入未知数,并用它表示其它的变量,把要求最值的变量设为函数;应用均值不等式求出函数的最值;还原实际问题,作出解答.,【典例3】某工厂拟建一座平面图为矩形且面积为200m2的三级污水处理池(平面图如图所示).如果池四周围墙建造单价为400元/m,中间两道隔墙建造单价为248元/m,池底建造单价为80元/m2,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论