2-命名、物理性质_第1页
2-命名、物理性质_第2页
2-命名、物理性质_第3页
2-命名、物理性质_第4页
2-命名、物理性质_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

命名,注:若苯环上两个取代基不同时,也按上述顺序,先出现的官能团为主官能团,它和苯环一起作为母体,编号从主官能团开始,另一个作为取代基。,一些常见的结构及缩写,考试要求IUPAC命名,螺4.5-1,6-癸二烯,5-甲基螺2.4庚烷,1,3-二甲基螺3.5-5-壬烯,1,8-二甲基-2-乙基二环3.2.1辛烷,7,7-二甲基二环2.2.1-2-庚烯,(9Z,12Z)-9,12-十八碳二烯酸,物理性质,(1)在同系物中,分子的相对质量增加,沸点升高;直链异构体的沸点支链异构体;支链愈多,沸点愈低。,沸点():-0.536.127.99.5,1.沸点与分子结构的关系,化合物沸点的高低,主要取决于分子间引力的大小,分子间引力越大,沸点就越高。而分子间引力的大小受分子的偶极矩、极化度、氢键等因素的影响。化合物的沸点与结构有如下规律:,(2)含极性基团的化合物(如:醇、卤代物、硝基化合物等)偶极矩增大,比母体烃类化合物沸点高。同分异构体的沸点一般是:伯异构体仲异构体叔异构体。,沸点():-0.578.4153,(3)分子中引入能形成缔合氢键的原子或原子团时,则沸点显著升高,且该基团愈多,沸点愈高。,沸点():-4597216290,沸点():7834.611877,(4)形成分子间氢键的比形成分子内氢键的沸点高。,沸点():279215,(5)在顺反异构体中,一般顺式异构体的沸点高于反式。,2.熔点与分子结构的关系,熔点的高低取决于晶格引力的大小,晶格引力愈大,熔点愈高。而晶格引力的大小,主要受分子间作用力的性质、分子的结构和形状以及晶格的类型所支配。晶格引力:以离子间的电性吸引力最大,偶极分子间的吸引力与分子间的缔合次之,非极性分子间的色散力最小。因此,化合物的熔点与其结构通常有以下规律:,(1)以离子为晶格单位的无机盐、有机盐或能形成内盐的氨基酸等都有很高的熔点。,(2)在分子中引入极性基团,偶极矩增大,熔点、沸点都升高,故极性化合物比相对分子质量接近的非极性化合物的熔点高。,(3)在分子中引入极性基团,偶极矩增大,熔点、沸点都升高,故极性化合物比相对分子质量接近的非极性化合物的熔点高。但在羟基上引入烃基时,则熔点降低。,熔点():5.441.810532,(4)能形成分子间氢键的比形成分子内氢键的熔点高。,熔点():116-710928213159,(5)同系物中,熔点随分子相对质量的增大而升高,且分子结构愈对称,其排列愈整齐,晶格间引力增加,熔点升高。,熔点():10.456.8,3.溶解度与分子结构的关系,有机化合物的溶解度与分子的结构及所含的官能团有密切的关系,可用“相似相溶”的经验规律判断。,(1)一般离子型的有机化合物易溶于水,如:有机酸盐、胺的盐类。,(2)能与水形成氢键极性化合物易溶于水,如:单官能团的醇、醛、酮、胺等化合物,其中直链烃基4个碳原子,支链烃基5个碳原子的一般都溶于水,且随碳原子数的增加,在水中的溶解度逐渐减小。,任意比例互溶7.9%,(4)能形成分子内氢键的化合物在水中的溶解度减小。,(4)一般碱性化合物可溶于酸,如有机胺可溶于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论