2013暑期高一物理竞赛讲义第5讲.学生版_第1页
2013暑期高一物理竞赛讲义第5讲.学生版_第2页
2013暑期高一物理竞赛讲义第5讲.学生版_第3页
2013暑期高一物理竞赛讲义第5讲.学生版_第4页
2013暑期高一物理竞赛讲义第5讲.学生版_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5讲 运动学综合温馨寄语截止到目前,我们已经把运动学的主要框架知识都学习完了,但是从学完知识到灵活运用,还有很远的一段路程。大家应该重点从公式和物理量的推导,方法,模型的总结几个方面去反复复习。知识点睛运动学思想方法总结:1坐标系方法:坐标系是定量研究世界的一个非常重要的工具,利用坐标系可以很容易的定义物理量(比如,位置,位移,轨迹,速度,加速度等等),分析物理量之间的关系(最大,最小,曲率半径等等)坐标系方法除了我们学习过的正交分解和斜分解,还有以后会学习到的极坐标等等要注意根据不同的例题采用不同的方法例题精讲【例1】 如图所示,冰球沿与冰山底边成的方向滚上山,上山初速度,它在冰山上痕迹已部分消失,尚存痕迹如图所示,求冰山与水平面的夹角(冰球在冰山上加速度为gsin,方向沿着斜面向下,其中g为重力加速度,近似取10m/s2)。【例2】 如图所示,已知在倾角为的斜面上,以初速度及与斜面成角的方向发射一小球,斜面与小球发生完全弹性碰撞,即小球的速度会被“镜面反射”问: 小球恰能到原始出发点,问总时间为多少? 为了实现这个过程,必须满足什么条件?【例3】 (摆线)一轮胎在水平地面上沿着一直线无滑动地滚动。(这种情况下,轮胎边缘一点相对于轮胎中心的线速度等于轮胎中心对地的速率),轮胎中心以恒定的速率向前移动,轮胎的半径为,在时,轮胎边缘上的一点A正好和地面上的O点接触,试以O为坐标原点,在如图的直角坐标系中写出轮胎上A点的位矢、速度、加速度和时间的函数关系。并写出A的轨迹方程(可以用参数方程描述,也就是说,可以引入一个新的自变量,x和y 都随着这个自变量的变化而变化。最常见的参数方程,就是以时间t为参数的。)AAxy【选讲内容】白努力家族大斗法:白努力家族(Bernoulli 家族)总共出过八个伟大的数学、物理、天文等等大师,还有很多画家、艺术家白努力兄弟想比较一下谁更聪明。于是就相约解决最速降线问题。 在当时比较牛逼的杂志上公开征集答案,他们各自提出了证明,杂志的主编,莱布尼茨也提出了证明,还有一个陌生人发来了一个有英国邮戳的证明肯定是牛顿最后所有的证明中,Johann的证明是最简洁明了了。如下:Johann Bernoullis solution约翰白努力的证明According toFermats principle:The actual path between two points taken by a beam of light is the one which is traversed in the least time.Johann Bernoulliused this principle to derive the brachistochrone curve by considering the trajectory of a beam of light in a medium where the speed of light increases following a constant vertical acceleration (that of gravityg).2Theconservation lawcan be used to express the speed of a body in a constant gravitational field as:,whereyrepresents the vertical distance the body has fallen. By conservation of energy the speed of motion of the body along an arbitrary curve does not depend on the horizontal displacement.Johann Bernoullinoted that thelaw of refractiongives a constant of the motion for a beam of light in a medium of variable density:,wherevmis the constant andrepresents the angle of the trajectory with respect to the vertical.The equations above allow us to draw two conclusions:1. At the onset, when the particle speed is nil, the angle must be nil. Hence, the brachistochrone curve istangentto the vertical at the origin.2. The speed reaches a maximum value when the trajectory becomes horizontal and the angle = 90.To keep things simple we can assume that the particle (or the beam) with coordinates (x,y) departs from the point (0,0) and reaches maximum speed after a falling a vertical distanceD. So,.Rearranging terms in the law of refraction and squaring gives:which can be solved fordxin terms ofdy:.Substituting from the expressions forvandvmabove gives:which is thedifferential equationof an invertedcycloidgenerated by a circle of diameterD【例4】 一根长为的均匀细杆可以绕通过其一端的水平轴在竖直平面内转动,如图所示杆最初在水平位置,杆上距为处放有一小物体(可视为质点),杆与其上小物体最初均处于静止状态若此杆突然以匀角速绕轴转动,设碰撞时细杆与水平面夹角为求追上细杆时与的关系。仅仅考虑比较小的情况。知识点睛2 变换参考系很多物理量在变换参考系的时候会有奇怪的性质发生常见的有,位移,速度变换到某些参考系之后,有的非圆周运动变成了圆周运动;某些不规则运动变成了竖直或者水平的运动从而可以迅速解题例题精讲【例5】 曲杆传动算得上机械史上一项伟大的发明,如图是汽缸中曲柄传动的应用,其变往复运动为圆周运动,现在把这个实物简化为右图的模型,设汽缸正以速度v向下运动,角度如图所示,圆盘的半径为r,计算圆盘转动的角速度。 【例6】 缠在线轴上的线绕过滑轮后,以恒定速度被拉出,如图所示,这时线轴沿水平面无滑动滚动,求线轴中心点的速度随线与水平方向的夹角的变化关系(线轴的内、外半径分别为和)【例7】 如图所示装置,设杆以角速度绕转动,其端则系以绕过滑轮的绳,绳子的末端挂一重物已知,当时,求物体的速度知识点睛3 过程问题,小量分析,微元方法微元法是高中竞赛必学的一个基本方法,它蕴含着微积分的基本思想之一:通过分析小量之间的关系来求得宏观的结论应用微元方法的时候一定要注意,哪些量可以忽略(二阶小量),哪些量是不可以忽略的,一阶小量4. 求极值,物理竞赛中用到的方法主要有:矢量几何方法求极值,二次函数极值,一元二次方程的求极值,微元法求极值,均值定理求极值,利用导数求极值等等.还有就是包络线问题,这类问题比较奇特,还请同学们多多体会知识点睛【例8】 体会一下什么是包络线:就是一个曲线可以把我们给定的图形围起来。请分析下面的图形的包络线:女王的冲击波:【例9】 二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?换句话讲,求一个虚线,这个虚线包围了所有可能被打到得范围.这个线我们叫做包络线.【解析】【例10】 设湖岸为一直线,有一小船自岸边的点沿与湖岸成角方向匀速向湖中央驶去有一人自点同时出发,他先沿岸走一段再入水中游泳去追船已知人在岸上走的速度为,在水中游泳的速度为试问船速至多为多少,此人才能追上船?【例11】 (回忆这个题目,思考各种方法)三只小蜗牛所在位置形成一个等边三角形,三角形的边长为60cm第一只蜗牛出发向第二只蜗牛爬去,同时,第二只向第三只爬去,第三只向第一只爬去,每只蜗牛爬行的速度都是5cm/min在爬行的过程中,每只蜗牛都始终保持对准自己的目标经过多长时间蜗牛们会相遇?相遇的时候,它们各自爬了多少路程?课后思考题:它们经过的路线可以用怎样的方程来描述?若将蜗牛视为质点,那么它们在相遇前,绕着它们的最终相遇点转了多少圈?为了保证竞赛班学习的质量,请同学们花1分钟填写下面内容:学习效

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论