




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章样本平均数的分布,一综述,上一章:总体中某一特定分数或一组分数出现的概率本章:总体中特定样本发生的概率。与推论统计关系更密切.深入理解:推论统计的目标?逻辑?,从同一总体取3次不同样本。每一个都不同:不同形状,不同均值,不同方差。如何对总体均值作出最佳估计?,二样本均值的分布(distributionofsamplemean),所有这些可能的样本会组成一个简单、有序、可预测的模式(样本分布).因此,我们可以用样本平均数的分布(distributionofsamplemean)的特征为依据来预测。样本平均数的分布(distributionofsamplemean):总体中可抽取的所有可能的特定容量(n)的随机样本的样本平均数的分布。,我们所要做的就是考察所有可能的样本(n一定,这点很重要;不同n的分布不同)然后根据其特性对总体特性(如总体平均数)作出预测。一个具体例子:考虑下列总体:2,4,6,8这个总体很小,我们知道其平均数(和方差):M=5,但假定我们不知道,想根据样本进行估计。如何作到?,step1:选取样本容量。本例中n=2(每次抽取两个)以后还会讨论样本容量,而一般原则是:样本容量越大,样本间相似的机会越高(样本与总体相似的机会也越高)step2:考虑所有可能的样本,并考察其分布。,样本均值的分布,step3:现在可以回答这个问题:选取一个均值大于7p(7)的样本的概率是多少?考察样本均值的分布,我们发现16个样本当中有1个样本其均值大于7。问题:从2、4、6、8四个数中每次随机抽2个数作为样本,问样本均数为4的概率是多少?这样我们就可以了解样本分布的规律,从而推论总体。,样本分布与总体分布的关系,1.形状:当总体分布为正态,方差已知时,样本均值的分布形状一定是正态分布。总体分布不知道,但是方差已知,只要样本容量n较大时(30以上),样本均值的分布近似正态分布。这样可以用正态分布理论理解样本统计量和总体参数的关系。,2.均值(平均数):每个样本平均数总是落在总体均值的附近(或上或下),这些样本均值的平均应该等于总体均值(x=)。(2+3+4+5+3+4+5+6+4+5+6+7+5+6+7+8)/16=80/16=5如果在同一总体中选择一组样本,大部分均值应当堆积在总体均值附近(如果不是这样,取样一定有偏差),3.样本平均数的标准差:标准误(standarderrorofX;SE)SE=x=/n标准误的用途是:告诉我们样本均值对总体均值的估计是否准确。换言之,取样误差是多大。标准误(取样误差)的大小取决于:总体的标准差和所取样本容量的大小。理论上讲,样本容量越大,取样误差越小。(画图举例),样本均数分布为正态分布,前面讲到:(1)当总体分布为正态,方差已知时,样本均值的分布形状一定是正态分布。(2)总体分布不知道,但是方差已知,只要样本容量n较大时(30或50以上),样本均值的分布近似正态分布。,样本均数分布为t分布,但还有其他情况:(1)总体方差未知时,(2)样本容量较小时(n30),这两种情况下样本平均数分布为t分布。t分布表的使用(类似Z分布)课下阅读185-188页,掌握t分布特点。,样本均数分布为t分布,样本平均数分布的标准误SE=Sx=x=s/n-1或者Sx=x=sn-1/ns=x2/nsn-1=x2/n-1,三、总体参数的估计(不讲),学习样本分布可以对总体参数进行估计:由样本统计量估计总体参数(推论统计)总体参数估计包括点估计和区间估计,点估计:总体参数通常不知道,可以用具体的某个样本统计量估计。由于样本统计量取值为数轴上某一点,故对总体参数的估计为点估计。(1)通常用样本平均数(X),作为总体参数的估计值(理论上希望抽样没有偏差,故样本平均数代表总体平均数)。(2)用样本方差(sn-12)作为总体方差的无偏估计值(即代表总体方差)。,事实上,我们很难说总体参数和某个具体的统计量恰恰一样,也就是说点估计正确的概率是有限的(实际很小)但如果说总体参数落在以样本统计量为核心的某个区间(区值范围)内,则把握大得多,这就是区间估计。区间估计:是根据样本分布理论,用样本分布的标准误(SE)计算区间长度,解释总体参数落入某个置信区间可能的概率。,考虑下列总体分布,假定我们猜测均值是85。这个猜测的置信性如何?假定我们猜测均值是在71和99之间的某处?这个猜测的置信性如何?也许你觉得后者的置信度较高。这个差异对应于点估计和区间估计间的差别。,1x包含所有X的68.26%1.96x包含所有X的95%2.58x包含所有X的99%,阅读198-203页,例:X=85,s=5,n=25。请对总体平均数作点估计和区间估计,均值的点估计如何找到总体均值的最佳单一值估计?(1)如果我们可以得到所有可能随机的样本,那么最佳的估计就是样本均值分布的均值。(2)假定我们只有一个样本。最佳的猜测是什么?,当然是,样本均值。,(3)这个猜测是不是最佳的猜测?,1)这是我们已知的唯一,最佳的猜测。2)大部分样本均值会相当接近总体均值,所以有很大的机会样本均值会很接近。,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 普洱市中石油2025秋招笔试英语专练题库及答案
- 10 古诗三首 竹石 教学设计-语文六年级下册统编版
- Grammar in Use说课稿中职基础课-拓展模块-外研版(2021)-(英语)-52
- 安全知识体系培训课件
- 九年级数学 反比例函数教学设计
- 中国广电淮南市2025秋招笔试行测题库及答案供应链采购类
- 《小桥送线》说课稿中职基础课-全一册-高教版(2023)-(音乐)-69
- 22.2 相似三角形的判定教学设计初中数学沪科版2012九年级上册-沪科版2012
- 海事船员安全培训简报课件
- 宽带拆机申请书
- 2024年新高考Ⅰ卷英语真题(原卷+答案)
- 中职高教版(2023)语文职业模块-第五单元:走近大国工匠(一)展示国家工程-了解工匠贡献【课件】
- 食品行业创新与研发
- 电力各种材料重量表总
- 樊荣-《医疗质量管理办法》核心制度要点解析与案
- 男性不育症诊治指南课件
- 《声声慢》省赛一等奖
- 消防安全教育培训记录表
- 国家开放大学《实用管理基础》形考任务1-4参考答案
- 2023混凝土结构耐久性电化学修复技术规程
- 食品有限公司制冷机安全风险分级管控清单
评论
0/150
提交评论