河南省通许县丽星中学高中数学 曲边梯形的面积课件 新人教A版选修22.ppt_第1页
河南省通许县丽星中学高中数学 曲边梯形的面积课件 新人教A版选修22.ppt_第2页
河南省通许县丽星中学高中数学 曲边梯形的面积课件 新人教A版选修22.ppt_第3页
河南省通许县丽星中学高中数学 曲边梯形的面积课件 新人教A版选修22.ppt_第4页
河南省通许县丽星中学高中数学 曲边梯形的面积课件 新人教A版选修22.ppt_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.5.1曲边梯形的面积,这些图形的面积该怎样计算?,曲边梯形的概念:如图所示,我们把由直线x=a,x=b(ab),y=0和曲线y=f(x)所围成的图形称为曲边梯形,如何求曲边梯形的面积?,例题(阿基米德问题):求由抛物线y=x2与直线x=1,y=0所围成的平面图形的面积,archimedes,约公元前287年约公元前212年,问题1:我们是怎样计算圆的面积的?圆周率是如何确定的?,问题2:“割圆术”是怎样操作的?对我们有何启示?,1.5.1曲边梯形的面积,直线x0、x1、y0及曲线yx2所围成的图形(曲边梯形)面积s是多少?,方案1,方案2,方案3,为了计算曲边梯形的面积s,将它分割成许多小曲边梯形,对任意一个小曲边梯形,用“直边”代替“曲边”(即在很小范围内以直代曲),有以下三种方案“以直代曲”。,y=f(x),用一个矩形的面积a1近似代替曲边梯形的面积a,得,用两个矩形的面积近似代替曲边梯形的面积a,得,aa1+a2+a3+a4,用四个矩形的面积近似代替曲边梯形的面积a,得,aa1+a2+an,将曲边梯形分成n个小曲边梯形,并用小矩阵形的面积代替小曲边梯形的面积,于是曲边梯形的面积a近似为,分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积s。,下面用第一种方案“以直代曲”的具体操作过程,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。,解题思想,“细分割、近似和、渐逼近”,下面用第一种方案“以直代曲”的具体操作过程,(1)分割,把区间0,1等分成n个小区间:,过各区间端点作x轴的垂线,从而得到n个小曲边梯形,他们的面积分别记作,每个区间长度为,(2)以直代曲,(3)作和,(4)逼近,分割,以曲代直,作和,逼近,例题:求由抛物线y=x2与直线x=0,x=1,y=0所围成的平面图形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论