




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不同寻常的一本书,不可不读哟!,1.了解平面向量基本定理及其意义2.掌握平面向量的正交分解及坐标表示3.会用坐标表示平面向量的加法、减法与数乘运算4.理解用坐标表示的平面向量共线的条件.,1个重要区别向量的坐标与点的坐标不同,向量平移后,其起点和终点的坐标都变了,但向量的坐标不变,课前自主导学,1.平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使_其中不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底,2.平面向量的坐标表示,(2)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解(3)平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,由平面向量基本定理知,该平面内的任一向量a可表示成axiyj,由于a与数对(x,y)是一一对应的,因此把_叫做向量a的坐标,记作a(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,(4)规定:相等的向量坐标_,坐标_的向量是相等的向量;向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关系,(3)若a(x,y),则a_;(4)若a(x1,y1),b(x2,y2),则ab_.,核心要点研究,1以平面内任意两个非零不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同2.利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或进行数乘运算,审题视点根据题意可设出点c、d的坐标,然后利用已知的两个关系式,得到方程组,求出坐标,1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而使几何问题可转化为数量运算2.两个向量相等当且仅当它们的坐标对应相同,此时注意方程(组)思想的应用,答案b,向量平行(共线)的充要条件的两种表达形式是:ab(b0)ab,或x1y2x2y10,至于使用哪种形式,应视题目的具体条件而定利用两个向量共线的条件列方程(组),还可求未知数的值,课课精彩无限,答案(2sin2,1cos2),no.2角度关键词:方法突破解决好本题的关键是充分利用图象语言,属于典型的数形结合思想方法的应用,数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野.,经典演练提能,答案:a,答案:a,3.2013福州模拟已知向量a(1,1),b(2,x),若ab与4b2a平行,则实数x的值为()a.2b.0c.1d.2答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南海洋招聘考试笔试试题(含答案)
- 自动驾驶接驳车服务创新创业项目商业计划书
- 翻译管理中的敏捷实践创新创业项目商业计划书
- 社交交友平台创新创业项目商业计划书
- 水产品的发酵工艺创新创业项目商业计划书
- 2025年电商平台供应链金融创新案例研究及风险预警报告001
- 2025年生态循环农业技术创新与经济效益长期影响评价报告
- 辽宁省重点高中联合体2024-2025学年高一下学期7月期末测试 历史试卷
- 2026届山东省青岛市黄岛区开发区致远中学化学高三上期末学业质量监测试题含解析
- 现代营销基础知识培训课件
- 集成光电子器件及设计-4集成光有源器件
- 2025届浙江省新英语高三第一学期期末教学质量检测试题含解析
- TCECA-G 0304-2024 数字化碳管理平台 总体框架
- DL∕T 976-2017 带电作业工具、装置和设备预防性试验规程
- 近几年大学英语四级词汇表(完整珍藏版)
- 儿科护理学教学案
- 盐酸罂粟碱在腰背痛治疗中的应用
- 一年级硬笔书法教学计划
- 静电安全在纸浆与造纸行业中的应用
- 汤小丹《计算机操作系统》官方课件 第四版
- 走近昆曲《牡丹亭》
评论
0/150
提交评论