高考数学 3.6倍角公式和半角公式配套课件 文 北师大版.ppt_第1页
高考数学 3.6倍角公式和半角公式配套课件 文 北师大版.ppt_第2页
高考数学 3.6倍角公式和半角公式配套课件 文 北师大版.ppt_第3页
高考数学 3.6倍角公式和半角公式配套课件 文 北师大版.ppt_第4页
高考数学 3.6倍角公式和半角公式配套课件 文 北师大版.ppt_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六节倍角公式和半角公式,三年6考高考指数:1.能利用两角的和差公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.能利用倍角公式和半角公式进行简单的恒等变形(包括导出半角公式,但不要求记忆).,1.灵活运用三角公式特别是倍角公式进行三角恒等变形,进而考查三角函数的图像和性质是高考的热点内容.2.以三角函数为背景,向量为载体考查恒等变形能力也是高考的常考内容.3.多以选择题、解答题的形式出现,属中、低档题.,1.二倍角的正弦、余弦、正切公式,【即时应用】(1)思考:二倍角公式中对任意的都成立吗?提示:不一定,当时,公式成立.(2)sin15cos15的值等于_.【解析】答案:,(3)若则tan2=_.【解析】答案:,2.半角公式,【即时应用】(1)思考:你能用sin、cos表示吗?提示:,(2)判断下列公式及其变形是否正确.(请在括号中填写“”或“”),【解析】根据公式可知根号下分子上应该是“+”,故错;等号右边分子上应该是“-”,故错;等号右边分子上应该是“-”,可以化简验证,故错.答案:,(3)填空:cos215-sin215=_.2sin215-1=_.【解析】cos215-sin215=cos30=2sin215-1=-cos30=答案:,三角函数的化简【方法点睛】三角函数的化简技巧、方法和要求(1)寻求角与角之间的关系,化非特殊角为特殊角;(2)正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值;,(3)一些常规技巧:“1”的代换、正切化弦、和积互化、异角化同角等(4)三角函数的化简常用方法是:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,正切化弦,特殊值与特殊角的三角函数互化(5)化简要求:能求出值的应求出值;使三角函数种数尽量少;使项数尽量少;次数尽量低;尽量使分母不含三角函数;尽量使被开方数不含三角函数.,【提醒】公式的逆用、变形用十分重要,特别是1+cos2=2cos2,1-cos2=2sin2,形式相似,容易出错,应用时要加强“目标意识”.,【例1】化简下列各式:【解题指南】(1)若注意到化简式是开平方根和2是的二倍,是的二倍,以及其范围不难找到解题的突破口;(2)由于分子是一个平方差,分母可通过二倍角公式化简,若注意到这两大特征,不难得到解题的切入点.,【规范解答】(1)因为所以又因为所以所以,原式=,(2)原式=答案:,【互动探究】把本例中的(2)改为求【解析】原式=答案:,【反思感悟】1.在二倍角公式中,两个角的倍数关系,不仅限于2是的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意三个角的内在联系,是常用的三角变换.2.化简题一定要找准解题的突破口或切入点,其中的降次、消元、切化弦、异名化同名、异角化同角是常用的化简技巧.3.常用的公式变形:,【变式备选】不查表求sin220+cos280+sin20cos80的值.【解析】sin220+cos280+sin20cos80=(1cos40)+(1+cos160)+sin20cos80=1cos40+cos160+sin20cos(60+20)=1cos40+(cos120cos40sin120sin40)+sin20(cos60cos20sin60sin20)=1cos40cos40sin40+sin40sin220=1cos40(1cos40)=,三角函数式的求值【方法点睛】三角函数式求值的类型和思路(1)三角函数式求值的类型三角函数式求值分为直接求值和条件求值,直接求值就是直接根据三角函数的公式化简变形求得三角函数式的值.条件求值是要根据条件选择合适的公式,进行三角恒等变换求得所需要的值,同时注意所给角的范围.,(2)条件求值的一般思路先化简所求式子或所给条件;观察已知条件与所求式子之间的联系(从三角函数名称及角入手);将已知条件代入所求式子,化简求值.,【例2】(1)(2012合肥模拟)计算:(2)若则tantan=_.(3)(2012西安模拟)已知则,【解题指南】(1)把正切函数换成正、余弦函数,再用公式化简求值;(2)利用两角和、差的余弦公式展开求coscos,sinsin,相除得结果;(3)根据已知条件求出tan,把所给的式子进行变形,代入tan即可.【规范解答】(1)原式=,(2)cos(+)=coscos-sinsin=cos(-)=coscos+sinsin=由解得coscos=,sinsin=,则解得答案:,【互动探究】把本例(2)中的“cos(+)=,cos(-)=”改为“sin(+)=,sin(-)=”,如何求【解析】因为sin(+)=sincos+cossin=,sin(-)=sincos-cossin=,两式相加得sincos=两式相减得cossin=-即得,【反思感悟】三角函数式求值问题的注意点(1)三角函数式求值时,一定要准确地应用公式和选择恰当的思路,否则会使求值过程繁琐.(2)条件求值要求准确利用所给的条件,在此可能涉及到式子的变形和角的变换,同时要注意所给角的范围.,【变式备选】已知求的值.【解析】又故可知从而,三角恒等式的证明【方法点睛】三角恒等式证明的方法及切入点(1)证明恒等式的方法:从左到右;从右到左;从两边化到同一式子.原则上是化繁为简,必要时也可用分析法.,(2)三角恒等式证明的切入点:看角:分析角的差异,消除差异,向结果中的角转化;看函数:统一函数,向结果中的函数转化.,【例3】证明:【解题指南】(1)从等号的左边开始证明先变成相同的角,再利用公式推导;(2)从等号的左边证明,主要是利用同角三角函数关系式,注意“1”的代换.,【规范解答】(1)左边=右边,原题得证.(2)左边=右边,原题得证.,【互动探究】把本例(2)中等号左边改为“”,右边不变,试证明.【证明】左边=右边.所以原题得证.,【反思感悟】1.三角函数式的化简与证明的类型及思路:(1)对三角的和式,基本思路是降幂、消项和逆用公式;(2)对三角的分式,基本思路是分子与分母约分和逆用公式,最终变成整式或数值;(3)对二次根式,则需要运用倍角公式的变形形式.2.化简与证明的过程中体现了化归的思想,是一个“化异为同”的过程,涉及切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”、“单角化复角”,“复角化单角”、“复角化复角”等具体手段.,【变式备选】在abc中,已知求证:【证明】,而即,【满分指导】三角函数性质综合题的规范解答【典例】(12分)(2011四川高考)已知函数(1)求f(x)的最小正周期和最小值;(2)已知求证:f()2-2=0.,【解题指南】(1)把f(x)化成asin(x+)的形式;(2)利用两角和与差的余弦公式展开,两式相加可得2coscos=0,结合0可得=.【规范解答】3分f(x)的最小正周期t=2,f(x)的最小值为-2.5分,(2)由已知得两式相加得2coscos=0.8分12分,【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以得到以下失分警示和备考建议:,1.(2011大纲版全国卷)已知(),tan=2,则cos=_.【解析】由(),tan=2得sin=2cos,又sin2+cos2=1,所以答案:,2.(2011重庆高考)已知且(),则的值为_.【解析】由题意知sin-cos=两边平方可得sin2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论