




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,任一物理量在某一定值附近往复变化均称为振动.,物体围绕一固定位置往复运动,称为机械振动。其运动形式有直线、平面和空间振动.,机械振动可分为周期和非周期振动,简谐运动最简单、最基本的振动.,谐振子作简谐运动的物体.,.,一、简谐振动的动力学方程及其解运动方程,为说明简谐振动的基本特征,先看两个具体的例子。,例4-1水平弹簧振子的运动。,把连接在一起的一个忽略了质量的弹簧和一个不发生形变的物体系统称为弹簧振子。,设x轴的原点与弹簧的平衡位置重合,振子在任意位置时所受合外力为,.,令,动力学方程,由牛顿第二定律,得,.,例4-2单摆小角度摆动,一根质量可以忽略并且不会伸缩的细线长l,上端固定,下端系一质量为m可看作质点的摆球,就构成一个单摆。可以看作定轴转动的刚体。,小角度摆动,重力矩可以写成,负号表示力矩方向与角位移方向相反。,根据转动定理有,.,令,动力学方程,.,简谐振动的定义:,上述二阶常系数线性齐次微分方程的通解为:,如果质点的动力学方程可以归结为的形式,且其中的决定于振动系统本身的性质,则该质点的运动称为简谐振动。,.,简谐振动物体的速度:,简谐振动物体的加速度:,简谐振动物体的运动方程:,.,二、描述简谐振动的特征量,1振幅,作简谐振动的物体离开平衡位置最大位移的绝对值A,称为振幅。,在SI中,振幅的单位是米,符号为m。,.,2相位与初相位,相位:,相位,初相位,初相位:,当t=0时,称为初相位,1)存在一一对应的关系;,.,3)初相位描述质点初始时刻的运动状态.,4)设两个振动状态所对应的相位分别为,若,称振动状态1超前于振动状态2;,若,称振动状态1滞后于振动状态2;,若,称振动状态1与振动状态2同步或同相。,.,常数和的确定,对给定振动系统,振幅和初相由初始条件决定.,.,3周期和频率,(1)周期物体作一次完全振动所需的时间称为周期,用T表示。,在SI中,周期的单位是秒,符号为s。,周期仅与振动系统本身的物理性质有关。,弹簧振子,单摆,.,单位时间内物体所作完全振动的次数,称为频率,用表示。,在SI中,频率的单位是赫兹,符号为Hz。,(2)频率,(3)圆频率或角频率,与频率只相差常数倍,称圆频率或角频率.,周期和频率仅与振动系统本身的物理性质有关,称固有周期、固有频率和固有圆频率。,.,例4-3原长为0.50m的弹簧上端固定,下端挂一质量为0.1kg的砝码。当砝码静止时,弹簧的长度为0.60m,若将砝码向上推,使弹簧回到原长,然后放手,则砝码做上下振动。(1)证明砝码的运动为简谐振动;(2)求此简谐振动的振幅、角频率和频率;(3)若从放手时开始计时,求此简谐振动的振动方程。,解,(1)以振动物体的平衡位置为坐标原点,建立如图所示的Ox坐标系。设t时刻砝码位于x处,由牛顿第二定律,得,.,式中x0为砝码处于平衡时弹簧的伸长量,有,式代入式,化简,得,因此,砝码的运动为简谐振动。,.,(2)砝码振动的角频率和频率分别为,设砝码的谐振动方程,由初始条件,t=0时,x=-x0=-0.1m,v=0,得,则其速度公式为,(3)简谐振动的振动方程为,.,三、简谐振动的几何描述旋转矢量法,1.旋转矢量,1)旋转矢量的模等于简谐振动的振幅A,2)旋转矢量绕O点作逆时针方向匀速转动,其角速度的大小等于简谐振动的角频率。,3)在t=0时,矢量A和x轴的夹角为,矢量A的矢端在x轴上的投影点的坐标为,以O为原点的旋转矢量的端点在Ox轴上的投影点的运动为简谐运动.,.,矢量A的矢端在x轴上的投影点的坐标为,在任意时刻t,旋转矢量与x轴的夹角为,以O为原点的旋转矢量的端点在Ox轴上的投影点的运动为简谐运动.,.,2.用旋转矢量表示简谐运动的速度和加速度,在x轴上的投影,.,3.简谐振动的旋转矢量表示法,如果画一个图表示出作匀速圆周运动的质点的初始径矢的位置,并标以,则相应的简谐运动的三个特征量都表示出来了,因此可以用这样一个图表示一个确定的简谐运动.简谐运动的这种表示法叫做旋转矢量法.,.,例4-4物体沿x轴作谐振动,其振幅为A=10.0cm周期为T=2.0s,t=0时物体的位移为x0=-5cm.且向x轴负方向运动.试求(1)t=0.5s时物体的位移;(2)何时物体第一次运动到x=5cm处?(3)再经过多少时间物体第二次运动到x=5cm处?,解,由已知条件,该谐振动在t=0时刻的旋转矢量位置如图所示.由图及初始条件可知,由于,所以,该物体的振动方程为,.,(1)将t=0.5s代入振动方程,得质点的位移为,(2)当物体第一次运动到x=5cm处时,旋转矢量从初始位置转过的角度为,如图所示,所以有,即,(3)当物体第二次运动到x=5cm处时,旋转矢量又转过,.,以弹簧振子为例,(振幅的动力学意义),四、简谐振动的能量,动能,势能,由于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁合金成品工安全演练评优考核试卷含答案
- 机舱拆解工诚信评优考核试卷含答案
- 2025年生活垃圾分类知识问答题(试题及答案)
- 2025年煤矿瓦斯检查考试题模拟考试题库及答案
- 康乐服务员安全文明强化考核试卷含答案
- 热力站运行工岗前品质考核试卷含答案
- 混凝土机械维修工岗前安全应急考核试卷含答案
- 数控激光切割机操作工安全强化知识考核试卷含答案
- 电线电缆制造工岗前安全培训效果考核试卷含答案
- 水解设备搪砌工班组协作评优考核试卷含答案
- 电力设施维护质量保证体系及措施
- 四大名著三国演义课件
- T/CHES 115-2023水库淤积及其影响评价技术规程
- 2025年河北省公需课《双碳目标下绿色能源转型趋势》答案
- 联通运营合作协议合同
- 8.1 走进人工智能 课件 2024-2025学年浙教版(2023)初中信息技术八年级下册
- 鄂尔多斯盆地地质特征与沉积模式分析
- 数字化赋能设计企业转型升级
- 鼻部解剖结构及其临床表现
- 生鲜农产品配送商业计划书模板
- 2025年股东退股权益申请协议书范例
评论
0/150
提交评论