2013高考数学复习课件 2.8 函数模型及其应用 理 新人教版_第1页
2013高考数学复习课件 2.8 函数模型及其应用 理 新人教版_第2页
2013高考数学复习课件 2.8 函数模型及其应用 理 新人教版_第3页
2013高考数学复习课件 2.8 函数模型及其应用 理 新人教版_第4页
2013高考数学复习课件 2.8 函数模型及其应用 理 新人教版_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1几类函数模型(1)一次函数模型:_(2)二次函数模型:_(3)指数函数模型:_(4)对数函数模型:_(5)幂函数模型:_2函数模型的应用实例根据收集的数据的特点,通过建立函数模型,解决实际问题的基本过程如下:,yaxb(a0),yax2bxc(a0),ymaxn(m0,a0,a1),ymlogaxn(a0,a1,m0),yaxnb(a0,n1),1某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系式较为近似的是(),答案C,2用固定的速度向右图形状的瓶子中注水,则水面的高度h和时间t之间的关系图象是(),解析:开始时,高度增加比较缓慢,随着时间的推移高度增加变快故选B.答案:B,3设甲、乙两地的距离为a(a0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为(),解析:注意到y为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.答案:D,4若一根蜡烛长20cm,点燃后每小时燃烧5cm,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为(),解析:函数关系式为h205t.故选B.答案:B,1函数模型的应用实例解函数应用问题,一般可按以下四步进行第一步:阅读理解,认真审题,即读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息在此基础上,分析出已知什么,求什么,涉及哪些知识,确定自变量与函数值的意义,尝试问题的函数化在审题时,要抓住题目中的关键量,要勇于尝试、探索,敏于发现、归纳,善于联想、化归,实现应用问题向数学问题的转化,第二步:引进数学符号,建立数学模型一般设自变量为x,函数为y,并用x表示各相关量,然后根据问题中的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓的建立数学模型第三步:利用数学方法将得到的常规数学问题(即数学模型)予以解答,求得结果第四步:转译成具体问题作出回答,2有关logax,xn和ax的研究一般地,对于指数函数yax(a1)和幂函数yxn(n0),通过探索可以发现,在区间(0,)上,尽管在一定范围内,ax会小于xn,但ax的增长速度快于xn的增长速度,因此总存在一个x0,当xx0时,就会有axxn.同样,对于对数函数ylogax(a1)和幂函数yxn(n0),在区间(0,)上,随着x的增大,logax增长得越来越慢,图象就像渐渐与x轴平行一样尽管在一定范围内,logax可能会大于xn,但logax的增长速度慢于xn的增长速度,因此总存在一个x0,当xx0时,就会有logax1)、ylogax(a1)和yxn(n0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上随着x的增大,yax(a1)的增长速度越来越快,会超过并远远大于yxn(n0)的增长速度,而ylogax(a1)的增长速度则会越来越慢,因此总会存在一个x0,当xx0时,就有logaxxnax.,考点一一次函数问题【案例1】某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.08元的价格退回报社在一个月(30天)里,有20天每天可以卖出400份,其余10天每天只能卖出250份设每天从报社买进的报纸的数量相同,则应该每天从报社买进多少份,才能使每月所获的利润最大?该销售点一个月最多可赚多少元?,(即时巩固详解为教师用书独有),关键提示:每月所赚的钱卖报总的收入付给报社的钱而总的收入分为3部分:在可卖出400份的20天里,卖出x份,收入为0.5x20元;在可卖出250份的10天里,在x份报纸中,有250份报纸可卖出,收入为0.525010元;没有卖掉的(x250)份报纸可退回报社,报社付出(x250)0.0810元注意写出函数式的定义域,解:设每天应从报社买进x份报纸由题意知250x400.设每月赚y元,得y0.5x200.525010(x250)0.08100.35x300.3x1050,x250,400因为y0.3x1050是定义域上的增函数,所以当x400时,ymax12010501170(元)答:每天从报社买进400份报纸,所获的利润最大,每月最多可赚1170元,【即时巩固1】某列火车从北京西站开往石家庄,全程277km.火车出发10min后,以120km/h的速度匀速行驶,且火车在前10min内共行驶了13km.试写出火车行驶的路程skm与匀速行驶的时间th之间的函数关系式,并求火车行驶2h的路程,考点二二次函数问题【案例2】某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流出x万人去加强第三产业分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(00,可解得0x50,设该市第二、三产业的总产值增加f(x)万元则f(x)(100x)a(12x%)1.2ax100a0.02a(x2110 x)0.02a(x55)260.5a,因为x(0,50且f(x)在(0,50上单调递增,所以当x50时,f(x)max60a.因此在保证第二产业的产值不减少的情况下,分流出50万人,才能使该市第二、三产业的总产值增加最多,解:若按原来的投资方式,由题设知,每年只需从60万元专款中拿出40万元投资,可获最大利润10万元这样10年总利润最大值为W1010100(万元),考点三分段函数问题【案例3】某公司生产某种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元已知总收益满足函数R(x)(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?,关键提示:(1)因为总收益总成本利润,所以利润总收益总成本因为R(x)是分段函数,所以f(x)也是分段函数(2)分别求出f(x)各段中的最大值,通过比较就可以求出f(x)的最大值解:(1)设月产量为x台,则总成本为20000100 x,,当x300时,有最大值25000.当x400时,f(x)60000100 x是减函数,f(x)6000010040025000.综上,当x300时,有最大值25000.答:月产量为300台时,公司所获利润最大,最大利润是25000元,解:根据题意,商品的价格随着时间t变化,所以应分类讨论,设日销售额为F(t)当0t20,tN时,,所以当t20时,F(t)max161.综上,当t10或t11时,日销售额最大,最大值为176.,考点四指数函数问题,(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为_(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过_小时,学生才能回到教室,【即时巩固4】设在海拔xm处大气压强是yPa,y与x之间的函数关系是yCekx,其中C、k是常量已知某地某日海平面的大气压为1.01105Pa,1000m高空的大气压为0.90105Pa.求600m高空的大气压强(结果保留3个有效数字),将C1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论