




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Econometrics(I)Lecture7AutocorrelationandRegressionwithTimeSeriesData,主讲人:,2,SeriallyCorrelatedDisturbances,Fortimeseriesregressionmodel,3,SourcesofSerialCorrelation,Inertiainmosteconomictimeseries:GDP,Priceindexes,etcSpecificationbiasOmittedvariablesIncorrectfunctionalformsLaggeddependentvariablesDatatransformation:Quarterlydata,firstdifferencing,etcNonstationarity:Mean,variance,andcovarianceofatimeseriesdonotchangeovertime,4,TheLagOperator,LYt=Yt-1,L2Yt=L(LYt)=Yt-2LqYt=Yt-q,L0=I,L0Yt=YtThelagoperatorcanbetreatedasascalarPolynomials,5,First-orderAutocorrelation:AR(1),SpecificationToensurethatAR(1)isastationarystochasticprocess,Properties,6,First-orderAutocorrelation:AR(1),AR(1)suggeststhatuthasalongmemory,butwhens,thetimeinterval,goestoinfinity,theautocorrelationcoefficientconvergestozero.Var-CovmatrixAR(p),7,First-orderMovingAverage:MA(1),SpecificationProperties,8,First-orderMovingAverage:MA(1),MA(1)suggeststhatuthasarathershortmemory:TheerrorsareonlyinterrelatedintwosuccessiveperiodsVar-CovmatrixMA(q),9,RelationsbetweenARandMA,AR(1)andMA()MA(1)andAR(),10,ConsequencesofAutocorrelation,TheOLSestimatorsarestilllinear,unbiased,consistent,andasymptoticallynormalHowever,theyarenolongerefficientNormallyunderestimatingtheerrorvarianceUnderestimatingandinflatingt-statisticsTheproblemsarenotresolvedbyusinglargesamplesizes,11,DetectingAutocorrelation,Informal/GraphicalMethodsDurbin-WatsonTestAssumptions:ThedisturbancesaregeneratedbyAR(1)processandarenormallydistributed.Also,theregressionmodeldoesnotincludethelaggedvaluesofthedependentvariableasoneoftheexplanatoryvariablesH0:Teststatistic,12,DetectingAutocorrelation,Durbin-WatsonTestTheexactprobabilitydistributionofD.W.isunknown,sounliket,Ftests,thereisnouniquecriticalvaluethatwillleadtotherejectionofH0However,wecanderivealowerbounddLandanupperbounddUdependingonTandk(Alreadytabulated)DecisionrulesDisadvantages,13,DetectingAutocorrelation,TheBreusch-GodfreyTestItisageneraltestoftheAR(p)andMA(q)processesLaggeddependentvariablescanbeincludedProceduresEstimatetheoriginalmodelbyOLStoobtaintheresidualsRegresstheresidualsontheoriginalXsandObtainR2fromthisauxiliaryregressionItcanbeshownthat,sorejectthenullhypothesisofnoautocorrelationiftheteststatisticissufficientlylargeNotethatthisisessentiallyaLagrangeMultipliertest,14,CorrectingOLSStandardErrors,HAC(heteroscedasticity-andautocorrelaton-consistent)standarderrorsaredevelopedbyNeweyandWest(1987)Itisanextensionofheteroskedasticity-robuststandarderrors(White,1980)Theyareonlyvalidinlargesamples,andwecangettheestimatorsofNoneedtoknowthestructureofautocorrelationandeasytoexecuteviastandardeconometricpackages,15,GLSEstimation,InthecaseofAR(1),16,GLSEstimation,Afterthetransformation(quasi-differencing)Fortheestimationtobefeasible,ThenitbecomesFGLSbypluggingtheestimatedAR(1)coefficientintothetransformedregressionmodel.TheFGLSestimatorsarebiasedbutconsistent,17,FGLSEstimation,Cochrane-Orcuttestimationomitsthefirstobservation,whereasPrais-Winstenestimationkeepsthefirstone.Itmakesnodifferenceinlargesamples,butsincethesizeofmanytimeseriessamplesissmall,thedifferencesarenotableintheseapplications.Iterativescheme:WhentheFGLSestimatorsarefoundusing,anewsetofresidualscanbecomputed,andaestimatorwouldbeeasytoobtain,thusleadingtothenewsetFGLSestimators.Wecanrepeattheprocessmanytimes,untiltheestimateofchangesverylittlefromthelastiteration.,18,AntidumpingFilingsandChemicalImports,TheeffectsofantidumpingfilingsbyU.S.chemicalindustriesonChineseimportsWereimportsunusuallyhighintheperiodimmediatelyprecedingtheinitialfiling?befile6=1duringthesixmonthsbeforefilingDidimportschangenoticeablyafteranantidumpingfiling?affile6=1duringthesixmonthsafterfilingWasthereasignificantreductioninChineseimportsafterthedecisioninfavoroftheU.S.industry?afdec6=1duringthesixmonthsafterthepositivedecisionDependentvariable:chnimp=volumeofChineseimportsControlvariableschempi=chemicalproductionindex(controlforoveralldemand)gas=volumeofgasolineproduction(controlfordemand)rtwex=exchangerateindex(strengthofdollaragainstothercurrencies)MonthlydatafromFebruary1978throughDecember1988,19,AntidumpingFilingsandChemicalImports,20,RegressionwithTimeSeriesData,Asequenceofrandomvariablesindexedbytimeiscalledastochasticprocessoratimeseriesprocess.Normally,weobtainoneandonlyonepossibleoutcome,orrealization,oftheprocess.Finitedistributedlag(FDL)modelsImpactpropensity/multiplier:ImmediatechangeinYduetoaone-unittemporaryincreaseinXattimetLong-runpropensity/multiplier:Long-runchangeinYgivenapermanentone-unitincreaseinX,21,OLSAssumptionsandProperties,LinearityandnoperfectcollinearityZeroconditionalmeanStrictexogeneity:Theerrorattimetisuncorrelatedwitheachexplanatoryvariablesineverytimeperiod.Incross-sectionaldata,randomsamplingsuggeststhatuiisautomaticallyindependentoftheexplanatoryvariablesotherthani,butintimeseriesregression,randomsamplingisalmostneverappropriate.Contemporaneousexogeneity,22,OLSAssumptionsandProperties,Linearity,noperfectcollinearity,andstrictlyexogeneityleadtounbiasedOLSestimatorsintimeseriesregressionZeroconditionalmean:Whatcausestheviolationofthestrictexogeneityassumption?Changesintheerrortermtodaycancausefuturechangesintheexplanatoryvariable.Thatis,theremayexistfeedbackfromYonfuturevaluesofX.Whereas,strictlyexogenousexplanatoryvariablescannotreacttowhathashappenedtoYinthepast.Rainfallandoutputvs.Policeofficerspercapitaandmurderrate,23,OLSAssumptionsandProperties,Homoskedasticity(likelytobeviolatedintimeseriesdata)andNoSerialCorrelationTheclassicallinearmodelassumptionsfortimeseriesdataaremorerestrictivethanthoseforcross-sectionaldata:StrictexogeneityandnoautocorrelationIncross-sectionaldata,randomsamplingensuresthatuiandujareindependentforanytwoobservationsiandj.AlltheaboveassumptionsleadtotheBLUE.Plusthenormalityassumption,standardinference(t,Ftests)canbeundertakenintimeseriesdata.,24,EffectsofPersonalTaxExemptiononFertilityRates,Variablesofinterestgfr:Generalfertilityrate,theNo.ofchildrenborntovery1,000womenofchild-bearingagepe:AveragerealdollarvalueofthepersonaltaxexemptionControlvariablesww2=1duringtheyears1941through1945pill=1fromyear1963on,whenthebirthcontrolpillwasmadeavailableYearlydatafrom1913through1984,25,RegressionresultResultwithaFDLmodelMulticollinearitybetweenpet,pet-1andpet-2makesithardtoestimatetheindividualeffectHowever,thethreevariablesarejointlysignificant.TheestimatedLRP=0.101,butisitstatisticallysignificant?,EffectsofPersonalTaxExemptiononFertilityRates,26,EffectsofPersonalTaxExemptiononFertilityRates,ReparameterizationRunningthenewregressionyieldsEventhougharenotsignificant,theestimateofLRPisourprimaryinterest,27,TrendingVariablesinOLSRegression,Manytimeserieshaveatendencyofgrowingordecliningovertime.Nothingabouttrendingvariablesnecessarilyviolatestheclassicallinearmodelassumptions.However,inmanycases,twotimeseriesprocessesappeartobecorrelatedonlybecausetheyarebothtrendingovertimeforreasonsrelatedtootherunobservedfactors:SpuriousregressionproblemFormulation:,28,29,TrendingVariablesinOLSRegression,Addingatimetrendtosolvetheomittedvariableproblem:“Detrending”Housinginvestmentandprices(1947-82,U.S.)PuertoRicanEmploymentRateandU.S.minimumwageandGNP(1950-97),30,StationaryTimeSeries,StationarystochasticprocessForeverycollectionoftimeindices,thejointdistributionofisthesameasthejointdistributionofNorestrictiononhowxtandxt-1arerelatedtooneanother,butitrequiresthenatureofanycorrelationbetweenadjacenttermsbethesameacrossalltimeperiodsStationarityisanaspectoftheunderlyingstochasticprocess,soitisveryhardtodeterminewhetherasinglerealizationwasgeneratedbyastationaryprocessornot.However,aprocesswithatimetrendisclearlynonstationary,31,CovarianceStationaryProcess,Astochasticprocessxt:t=1,2,withafinitesecondmomentE(xt2)iscovariancestationaryifE(xt)isconstantVar(xt)isconstnatForanyt,s1,Cov(xt,xt+s)dependsonlyonsandnotontIfastationaryprocesshasafinitesecondmoment,itmustbecovariancestationary,buttheconverseiscertainlynottrue.Ifweallowtherelationshipbetweentwovariablestochangearbitrarilyineachtimeperiod,wecannothopetolearnmuchabouthowachangeinonevariableaffectstheotherifweonlyhaveasinglerealizationWeassumeacertainformofstationarityinthatOLSestimatorsdonotchangeovertime,32,WeaklyDependentTimeSeries,Acovariancestationarytimeseriesisweaklydependentifthecorrelationbetweenxtandxt+sgoestozero“sufficientquickly”ass.Itisalsocalledasymptoticallyuncorrelated.Examples:MA(1)andAR(1)Thecentrallimittheoremfortimeseriesdatarequiresstationarityandsomeformofweakdependence.Atrendingseries,thoughcertainlynonstationary,canbeweaklydependent.Aseriesthatisstationaryaboutitstrend,aswellasweaklydependent,iscalledatread-stationaryprocess.ItcanbeusedinOLSregressionprovidedthattimetrendisincludedinthemodel,33,AsymptoticPropertiesofOLSwithTimeSeriesData,Stationarityandweakdependence(xt,Yt);t=1,2,isstationaryandweaklydependent,sothatthelawoflargenumbersandthecentrallimittheoremcanbeappliedtosampleaveragesContemporaneousexogeneityAlongwiththeusualassumptionsoflinearityandnoperfectcollinearity,theOLSestimatorsareconsistent:,34,Examples,Staticmodel:Underweakdependence,SoitdoesnotruleoutcorrelationbetweenXsandpasterrortermsorYs,forexample,FinitedistributedlagmodelAR(1)modelAmodelwithalaggeddependentvariablecannotsatisfythestrictexogeneityassumptionHowever,theOLSestimatorsoftheAR(1)modelareconsistent,thoughbiased.Thebiascanbelargeifsamplesizeissmallorif1iscloseto1.,35,HACStandardErrorsandFGLSRevisited,FGLSestimatorsareconsistentifdataareweaklydependentandexplanatoryvariablesarestrictlyexogenous.(OLSjustrequiresweakdependencyandcontemporaneousexogeneity.)ItcanbeshownthattheweakestconditionfortheconsistencyofFGLSisthatutisuncorrelatedwithxt-1,xt,andxt+1HACstandarderrorscanbepoorlybehavedinthepresenceofsmallsamplesizeandsevereserialcorrelation(OLSestimatorsaretooinefficient)ComputingHACstandarderrorsafterFGLSestimationmaybeagoodapproach,36,HighlyPersistent(StronglyDependent)TimeSeries,RandomWalkItcanbeshownthatSoitisneitherstationarynorweaklydependentRandomwalkisaspecialcaseofwhatisknownasaunitrootprocessPolicyrelevance,37,38,HighlyPersistent(StronglyDependent)TimeSeries,Aseriescanbetrendingbutnothighlypersistent(trendstationary),andhighlypersistentseries(interestrates,inflationrates,unemploymentrates)havenoobvioustrends.Randomwalkwithadrift,39,40,HighlyPersistent(StronglyDependent)TimeSeries,Weaklydependentprocessaresaidtobeintegratedoforderzero,orI(0).Nothingneedstobedonetosuchseriesbeforeusingtheminregressionanalysis.Unitrootprocessesaresaidtobeintegratedoforderone,orI(1).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能电器考试题及答案
- 《发现自我-我是独一无二的那朵花》说课稿-校本七年级上心理健康教育辅导课
- 和谈的维吾尔族课件
- 广东乐理考试试题及答案
- 好学的德语考试题及答案
- 架子鼓乐理测试题及答案
- 2025年潢川大班考试题及答案
- 2025年农业综合行政执法大比武竞赛考试题库500题(含答案)
- 北京安全工程师《安全生产法》:安全生产立法的必要性模拟试题
- 2025校企合作培训简单协议书
- 2022新高考I卷II卷英语读后续写解读讲评及写作技巧指导课件
- YY/T 0466.1-2023医疗器械用于制造商提供信息的符号第1部分:通用要求
- 教师节主题班会课件PPT
- 汉字课第一课(汉语国际教育)课件
- 安徽省物业管理行业专题调研分析报告
- 英语外研八年级上册群文阅读课PPT 韩茜
- 食品安全与日常饮食知到章节答案智慧树2023年中国农业大学
- IE七大手法培训教材人机作业图
- GB/T 9766.3-2016轮胎气门嘴试验方法第3部分:卡扣式气门嘴试验方法
- GB/T 22751-2008台球桌
- 《智慧养老》方案ppt
评论
0/150
提交评论