等腰三角形的判定与反证法_第1页
等腰三角形的判定与反证法_第2页
等腰三角形的判定与反证法_第3页
等腰三角形的判定与反证法_第4页
等腰三角形的判定与反证法_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,1.1等腰三角形,第一章三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,北师大版八年级数学下册,第3课时等腰三角形的判定与反证法,1.掌握等腰三角形的判定定理及其运用;(重点、难点)2.理解并掌握反证法的思想,能够运用反证法进行证明;(重点),学习目标,复习引入,导入新课,问题1:等腰三角形有哪些性质定理及推论?,等腰三角形的两底角相等(简写成等边对等角”),等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合(简写成三线合一”),问题2:等腰三角形的“等边对等角”的题设和结论分别是什么?,题设:一个三角形是等腰三角形,结论:相等的两边所对应的角相等,思考:如图,在ABC中,如果B=C,那么AB与AC之间有什么关系吗?,我测量后发现AB与AC相等.,3cm,3cm,讲授新课,A,B,C,如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得B=C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?,互动探究,已知:如图,在ABC中,B=C,那么它们所对的边AB和AC有什么数量关系?,建立数学模型:,做一做:画一个ABC,其中B=C=30,请你量一量AB与AC的长度,它们之间有什么数量关系,你能得出什么结论?,AB=AC,你能验证你的结论吗?,在ABD与ACD中,,1=2,,ABDACD(AAS).,B=C,,AD=AD,,AB=AC.,过A作AD平分BAC交BC于点D.,证明:,结论验证:,有两个角相等的三角形是等腰三角形.(简称“等角对等边”).,等腰三角形的判定定理:,应用格式:,AB=AC(等角对等边).,A,C,B,总结归纳,作用:证明同一个三角形中边相等,证明三角形是等腰三角形。,(等角对等边).,(等角对等边).,错,因为都不是在同一个三角形中.,辨一辨:如图,下列推理正确吗?,例1已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:AED是等腰三角形.,证明:AB=DC,BD=CA,AD=DA,ABDDCA(SSS),ADB=DAC(全等三角形的对应角相等),AE=DE(等角对等边),AED是等腰三角形.,典例精析,例2已知:如图,在ABC中,AB=AC,点D,E分别是AB,AC上的点,且DEBC.求证:ADE为等腰三角形.,证明AB=AC,,B=C.,又DEBC,,ADE=B,AED=C.,ADE=AED.,ADE为等腰三角形.,练习1:已知:如图,CAE是ABC的外角,ADBC且1=2求证:AB=AC,随堂练习,想一想:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等你认为这个结论成立吗?如果成立,你能证明它吗?,在ABC中,如果BC,那么ABAC.,如图,在ABC中,已知BC,此时,AB与AC要么相等,要么不相等.,假设AB=AC,那么根据“等角对等边”定理可得B=C,但已知条件是BC.“B=C”与“BC”相矛盾,因此ABAC.,小明是这样想的:,你能理解他的推理过程吗?,在证明时,先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立这种证明方法称为反证法,总结归纳,用反证法证题的一般步骤,1.假设:先假设命题的结论不成立;2.归谬:从这个假设出发,应用正确的推论方法,得出与定义,公理、已证定理或已知条件相矛盾的结果;3.结论:由矛盾的结果判定假设不正确,从而肯定命题的结论正确.,反证法的步骤:,证明:假设,于是,这与相矛盾,因此“”的假设不成立。所以,,例3用反证法证明:一个三角形中不能有两个角是直角.已知:ABC求证:A,B,C中不能有两个角是直角,【分析】按反证法证明命题的步骤,首先要假定结论“A,B,C中不能有两个角是直角”不成立,即它的反面“A,B,C中有两个角是直角”成立,然后,从这个假定出发推下去,找出矛盾,典例精析,证明:假设A,B,C中有两个角是直角,不妨设A=B=90,则A+B+C=90+90+C180这与三角形内角和定理矛盾,A=B=90不成立所以一个三角形中不能有两个角是直角,例1.证明:如果a1,a2,a3,a4,a5都是正数,且a1+a2+a3+a4+a5=1,那么,这五个数中至少有一个大于或等于1/5.,用反证法来证:证明:假设这五个数全部小于1/5,那么这五个数的和a1+a2+a3+a4+a5就小于1.这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾.因此假设不成立,原命题成立,即这五个数中至少有下个大于或等于1/5.,当堂练习,72,36,如果AD=4cm,则,1.已知:如图,A=36,,DBC=36,C=72,1=,2=;,图中有个等腰三角形;,BC=cm;,72,36,3,4,5,2.已知:等腰三角形ABC的底角ABC和ACB的平分线相交于点O.求证:OBC为等腰三角形.,ABD=DBC=,ACE=ECB=.,DBC=ECB,,OBC是等腰三角形.,又ABC是等腰三角形,,ABC=ACB,,3.求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.,已知:,直线l1,l2,l3在同一平面内,且l1l2,l3与l1相交于点P.,求证:,l3与l2相交.,l1,l2,l3,P,经过直线外一点,有且只有一条直线与已知直线平行,假设不成立,l3与l2不相交,l3l2,l1l2,活动与探究,1.如图,BD平分CBA,CD平分ACB,且MNBC,设AB=12,AC=18,求AMN的周长.,分析:要求AMN的周长,则需求出AM+MN+AN,而这三条边都是未知的由已知AB=12,AC=18,可使我们联想到AMN的周长需转化成与AB、AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论