21[1]5解直角三角形应用举例全包括(初三)_第1页
21[1]5解直角三角形应用举例全包括(初三)_第2页
21[1]5解直角三角形应用举例全包括(初三)_第3页
21[1]5解直角三角形应用举例全包括(初三)_第4页
21[1]5解直角三角形应用举例全包括(初三)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解直角三角形应用-测高问题,在视线与水平线所成的角中,视线在水平线的上方的角叫做仰角。视线在水平线下方的角叫做俯角。强调:仰角与俯角都是视线与水平线所成的角。,在假期里,同学们约好一起去爬山,他们走进大门后远远望见山顶的C处都觉得它好远好高,能爬上去不容易,出发时大家都充满信心,但是有的同学在爬的过程中由于体力不支,在半山腰B处就停下来,有的同学则克服困难,坚持着爬到山顶C处,,例题,如果此山的高度为500米,在A处测得C处的仰角为45,如果要从顶点C处到大门A处建立一条空中索道,那么这条索道需要多少米?请你帮助算一算。如果半山腰B处的垂直距离是200米,A处到垂足E处的距离是200米,那么B处的俯角是多少?,M,练习:如图4,河对岸有水塔AB.在C处测得塔顶A的仰角为30,向塔前进12m到达D,在D处测得A的仰角为45,求塔高.,图4,解题步骤小结,1、首先要弄清题意,结合实际问题中的示意图分清题目中的已知条件和所求结论。,2、找出与问题有关的直角三角形,或通过作辅助线构造有关的直角三角形,把实际问题转化为解直角三角形的问题。,3、合理选择直角三角形的元素之间的关系求出答案。,问题1:在旧城改造中,要拆除一烟囱AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD顶端C测得A点的仰角为45,到B点的俯角为30,问离B点30米远的保护文物是否在危险区内?(约等于1.732),问题2:如图一个摄像仪器架在过街天桥上,检查马路行驶的车辆是否超速,已知摄像仪器A到公路L的垂直距离AD为21米,A到公路点C的俯角为30,到公路点B的俯角为60,一辆汽车在公路L上沿CB方向匀速行驶,测得它从点C到点B所用的时间为0.4秒。,(1)计算此车从点C到B的速度v为每秒多少米?(结果精确到个位,约等于1.732),(2)如果此路段限定时速不超过60千米,判断此车是否超速?并说明理由。,同学们开动脑筋想一想,还可以涉及到哪些问题?,赛一赛:以小组为单位,根据下列条件编写一道有实际意义的问题,看看那一个小组编写有创意,有意义。并且合乎实际情况。条件:一个仰角45,一个俯角30。结论可以由自己确定。,课后小结:,本节课我们用解直角三角形的有关知识解决有关俯角、仰角的实际问题。你怎么理解俯角、仰角?在分析处理这类实际问题时,你应该采取怎样的步骤呢?除了以上知识你还有哪些收获?有哪些不解?谈谈你的看法。,解直角三角形应用-坡度问题,概念:坡度、坡比,A,B,h,L,如图:坡面的垂直高度h和水平宽度L的比叫坡度(或叫坡比)用字母表示为,坡面与水平面的夹角记作(叫坡角)则tan=,练习:(1)一段坡面的坡角为60,则坡度i=_;,(2)已知一段坡面上,铅直高度为,坡面长为,则坡度i_,坡角_。,你会算吗?,1、坡角=45坡比i=,11,30,如图,铁路的路基横断面是等腰梯形,斜坡AB的坡度为1:,坡面AB的水平宽度为米,基面AD宽2米,求路基高AE、坡角B和基底BC的宽.,C,2,例1,A,B,D,E,F,例2:如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图,,水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=13,斜坡CD的坡度I=12.5,求斜坡坝底宽AD和斜坡AB的长,练习1:如图,水库大坝横断面是梯形,坝顶BC宽为6m,坝高23m,斜坡AB的坡度=1:,斜边CD的坡度为=1:1,求斜坡AB的长,坡角和坝底AD宽。,A,D,B,C,E,F,练习2:修建一条铁路要经过一座高山,需在山腰B处开凿一条隧道BC。经测量,西山坡的坡度i5:3,由山顶A观测到点C的俯角为60,AC的长为60m,如图所示,试求隧道BC的长.,i=5:3,课堂小结:,1弄清坡度、坡角、水平距离、垂直距离等概念的意义,明确各术语与示意图中的什么元素对应,只有明确这些概念,才能恰当地把实际问题转化为数学问题,2认真分析题意、画图并找出要求的直角三角形,或通过添加辅助线构造直角三角形来解决问题,3选择合适的边角关系式,使计算尽可能简单,且不易出错,4按照题中的精确度进行计算,并按照题目中要求的精确度确定答案以及注明单位,解直角三角形应用-航海问题,方向角,北,东,西,南,例题:某船自西向东航行,在A出测得某岛在北偏东60的方向上,前进8千米测得某岛在船北偏东45的方向上,问(1)轮船行到何处离小岛距离最近?(2)轮船要继续前进多少千米?,A,北,南,西,东,北,南,西,东,某船自西向东航行,在A出测得某岛在北偏东60的方向上,前进8千米测得某岛在船北偏东45的方向上,问(1)轮船行到何处离小岛距离最近?(2)轮船要继续前进多少千米?,30,45,8千米,A,B,C,D,某船自西向东航行,在A出测得某岛在北偏东60的方向上,前进8千米测得某岛在船北偏东45的方向上,问(1)轮船行到何处离小岛距离最近?(2)轮船要继续前进多少千米?,解:,练习1:如图所示,某船以每小时36海里的速度向正东航行,在A点测得某岛C在北偏东60方向上,航行半小时后到B点,测得该岛在北偏东30方向上,已知该岛周围16海里内有暗礁,(1)试说明B点是否在暗礁区域外(2)若继续向东航行,有无触礁危险?请说明理由,D,解:(1)AB=360.5=18,ADB=60,DBC=30,ACB=30又CAB=30,BC=AB=1816,B点在暗礁区域外(2)过C点作CHAF,垂足为H,在RtCBH中,BCH=30,令BH=x,则CH=x,在RtACH中,CAH=30,AH=CH,18x=-x,x=9,CH=916,船继续向东航行有触礁的危险答:B点在暗礁区域外,船继续向东航行有触礁的危险,练习2:如图所示,气象台测得台风中心在某港口A的正东方向400公里处,向西北方向BD移动,距台风中心300公里的范围内将受其影响,问港口A是否会受到这次台风的影响?,A,B,D,东,北,45,C,练习3:正午10点整,一渔轮在小岛O的北偏东30方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60方向航行,那么渔轮到达小岛O的正东方向是什么时间(精确到1分)?,O,A,30,60,南,东,B,C,北,西,练习4、一渔船上的渔民在A处看见灯塔在北偏东60方向,这艘渔船以28海里/时的速度向正东航行,半小时到B处.在B处看见灯塔M在北偏东15方向,求此时灯塔M与渔船的距离?,1.解直角三角形,就是在直角三角形中,知道除直角外的其他五个元素中的两个(其中至少有一个是边),求出其它元素的过程.2.与之相关的应用题有:求山高或建筑物的高;测量河的宽度或物体的长度;航行航海问题等.解决这类问题的关键就是把实际问题转化为数学问题,结合示意图,运用解直角三角形的知识.3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论