




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章自由曲线曲面,8.1曲线和曲面的表示,位置矢量空间一点A,从原点O到A的连线OA表示的矢量。曲线的表示形式空间一点的位置矢量有3个坐标分量,而空间曲线则是空间动点运动的轨迹,即空间矢量端点运动形成的矢量曲线,矢量方程为参数方程为,8.1曲线和曲面的表示,曲线的参数表示优点有更大的自由度来控制曲线或曲面形状可对参数曲线曲面方程直接进行几何变换,而不需要对曲线曲面每个数据点进行几何变换可处理斜率无穷大的情况对变量个数不限,便于将低维空间中的曲线曲面扩展到高维空间便于采用规格化的参数变量易于用矢量和矩阵表示几何分量,简化计算,8.1曲线和曲面的表示,曲线的矢函数求导,又设r(u)=x(u),y(u),z(u),因为,8.1曲线和曲面的表示,所以矢函数的导矢也是一个矢函数,因此也有方向和模。当,c(u)/u就转变为切线矢量,故又称导矢为切矢。曲线的自然参数方程设在空间曲线c(u)上任取一点M0(x0,y0,z0)作为计算弧长起点,曲线上其他点M(x,y,z)到M0的弧长s作为曲线方程的参数,这样的方程称为曲线的自然参数方程,弧长则称为自然参数。,8.1曲线和曲面的表示,曲线的法矢量设曲线自然参数方程为c=c(s),曲线的切矢为单位矢量,记为因为(T(s)2=1,对左式求导,得到说明T(s)与垂直,由于不是单位矢量,可以认为其中单位矢量N(s)为主法线单位矢量,简称为主法矢,N(s)总是指向曲线凹入的方向。K(s)为一标量系数,称为曲线的曲率,而称为曲率矢量,其模就是曲线曲率,8.1曲线和曲面的表示,记称为曲率半径。设垂直于T和N的单位矢量为B,称B为法线单位矢量或副法线单位矢量由切线和主法线确定的平面称为密切平面,有主法线和副法线组成的平面称为法平面,由切线和副法线构成的平面称为从切面。,8.1曲线和曲面的表示,曲面的切矢和法矢空间曲面采用双参数表示:,当u为常数时,上式变成单参数v的矢函数,它是曲面上的空间曲线,称它为v线,同理v为常数时,则称为u线。将矢函数S(u,v)对u求导,得切矢量,切矢的方向指向参数u增长的方向,同理可求对v的切矢量。,8.1曲线和曲面的表示,经过曲面上某点M(u,v)的切平面的法矢量为,8.1曲线和曲面的表示,插值、逼近和拟合型值点指通过测量或计算得到的曲线或曲面上少量描述几何形状的数据点。控制点指用来控制或调整曲线曲面形状的特殊点。插值和逼近插值设计方法要求建立的曲线曲面数学模型严格通过已知的每一个型点。而逼近设计方法只是近似的接近已知的型值点。拟合指在曲线曲面的设计过程中,用插值或逼近的方法使生成的曲线曲面达到某些设计要求。,8.1曲线和曲面的表示,曲线段间的连续性定义C0连续(0阶参数连续)前一段曲线的终点与后一段曲线的起点相同。C1连续(一阶参数连续)两相邻曲线段的连接点处有相同的一阶导数。C2连续(二阶参数连续)两相邻曲线段的连接点处有相同的一阶导数和二阶导数。,8.2贝叶斯(Bezier)曲线,1、Bezier曲线定义给定空间n+1个点P0,P1,Pn,称下列参数曲线为n次的Bezier曲线。,其中是Bernstein基函数,8.2贝叶斯(Bezier)曲线,一般称折线P0、P1Pn为C(u)的控制多边形,称P0、P1Pn各点为C(U)的控制顶点。控制多边形是C(u)的大致勾画,C(u)是P0、P1Pn的逼近。,P0,P3,P1,P2,图8.1Bezier曲线,8.2贝叶斯(Bezier)曲线,Bernstein基函数性质非负性规范性对称性递推性端点性最大性可导性升阶公式分割性积分性,8.2贝叶斯(Bezier)曲线,Bezier曲线性质端点性端点切矢量端点曲率对称性几何不变性凸包性变差缩减性,8.2贝叶斯(Bezier)曲线,Bezier曲线矩阵表示一次Bezier曲线,P1,P0,u,图8.2一次Bezier曲线,8.2贝叶斯(Bezier)曲线,Bezier曲线矩阵表示二次Bezier曲线,P2,P0,图8.3二次Bezier曲线,P(u),Q2,P1,Q1,8.2贝叶斯(Bezier)曲线,Bezier曲线矩阵表示三次Bezier曲线,P3,P0,图8.3三次Bezier曲线,P(u),P1,P2,8.2贝叶斯(Bezier)曲线,Bezier曲线的DeCasteliau算法给定三维空间点P0、P1Pn以及一维标量参数u,假定:,并且那么即为Bezier曲线上参数u处的点:,8.2贝叶斯(Bezier)曲线,Bezier曲线的DeCasteliau算法,DeCasteljau(P,n,u,C)/*ComputepointonaBeziercurveusingDeCasteljaualgorithm*/*input:P,n,u*/*Output:C(apoint)*/For(i=0;i=n;i+)Qi=Pi;For(k=1;k=n;k+)For(i=0;i0,Ni,p(u)是两个(p-1)次基函数的线性组合;3、计算一系列的基函数,需要指定节点矢量U和次数P;4、Ni,p(u)是一分段多项式,仅仅在u0,um区间对其感兴趣;5、ui,ui+1)称为第i个节点区段,其长度可以为0;6、若,则称上式中除tj-1,tj+k以外的每一个节点为U的k重节点。,8.4B样条曲线,B样条基函数的性质局部性非负性规范性分段多项式连续性可微分性,8.4B样条曲线,B样条曲线定义设P0,P1,Pn为给定空间的n+1个控制点,U=u0,u1,um是m+1个节点矢量,称下列参数曲线为P次的B样条曲线,折线P0,P1,Pn为B样条曲线的控制多边形。,次数p,控制顶点个数n+1,节点个数m+1具有下列关系m=n+p+1,8.4B样条曲线,B样条曲线性质严格凸包性分段参数多项式可微性或连续性几何不变性局部可调性近似性变差缩减性,8.4B样条曲线,例题:给定控制顶点Pi(i=0,8),定义一条三次B样条曲线,这说明n=8,p=3,各种关系如下确定:1、节点矢量2、曲线定义域3、当定义域u3,u9)内不含重节点时,曲线段数=n-p+1=64、当时,曲线C(u)由Pi-p,Pi)=P3,P6)4个控制顶点定义,与其他顶点无关。5、移动P3时,将至多影响到定义在ui,ui+p+1)=u3,u7)区间上的那些曲线段的形状。6、在u6,u7)上的三次B样条基及计算定义在u6,u7)上那段三次B样条曲线将涉及到ui-p+1=u4,ui+p=u9共6个节点。,8.4B样条曲线,重节点对B样条曲线的影响节点的非均匀或非等距分布包含两层含义:1、节点区间长度不等;2、重节点,即节点区间长度为01、重节点的重复度每增加1,曲线段数就减1,同时样条曲线在该重节点处的可微性或参数连续阶降12、当定义域端点节点重复度为p时,p次B样条曲线的端点将与相应的控制多边形的顶点重合,在端点处与控制多边形相切。3、当端节点重复度为p时,p次B样条曲线插值于相应的控制多边形顶点。4、当端节点重复度为p+1时,p次B样条曲线就具有和p次Bezier曲线相同的端点几何性质。5、p次B样条曲线若在定义域内相邻两节点都具有重复度p,可以生成定义在该节点区间内上那段B样条曲线的Bezier点。6、当端点节点重复度为p+1的p次B样条曲线的定义域仅有一个非零节点区间,则所定义的该p次B样条曲线就是p次Bezier曲线,8.4B样条曲线,均匀B样条曲线非均匀B样条曲线,8.5B样条曲面,本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州传媒职业学院第十三届贵州人才博览会引才模拟试卷及一套答案详解
- 2024年太原市大学生乡村医生专项计划招聘真题
- 2025呼伦贝尔新巴尔虎左旗蒙医医院招聘5名合同制人员考前自测高频考点模拟试题及一套参考答案详解
- 2025广东江门市开平市教育系统赴高校招聘急需紧缺人才16人模拟试卷及完整答案详解1套
- 2025广西百色市西林县住房和城乡建设局招聘编外2人模拟试卷有答案详解
- 2025年甘肃省武威市民勤县西渠镇人民政府选聘专业化管理村文书考前自测高频考点模拟试题及参考答案详解1套
- 2025年白城市暨洮北区人才交流中心就业见习岗位和见习人员征集考前自测高频考点模拟试题带答案详解
- 2025辽宁鞍山市千山区公益性岗位招聘2人考前自测高频考点模拟试题及答案详解参考
- 2025湖南邵阳市大祥区事业单位人才引进9人考前自测高频考点模拟试题及一套答案详解
- 2025广东广州市增城区人民法院招聘合同制司法警察兼囚车驾驶员拟聘用人员考前自测高频考点模拟试题及1套完整答案详解
- 教师师德师风专题培训
- 关于母爱的好句子赞美母爱的好句子
- 风机基础实施细则
- 《论语》阅读题之为政以德主题
- 生药鉴别细辛、牛膝、大黄、何首乌、川乌、附子演示文稿
- 水上客运企业安全风险辨识分级管控指南
- GB/T 7531-2008有机化工产品灼烧残渣的测定
- GB/T 12604.3-2005无损检测术语渗透检测
- 《行政组织学通论》配套教学课件
- 中控室消防值班记录表正式版
- 大宗商品贸易业务风险管理指引
评论
0/150
提交评论