




已阅读5页,还剩116页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
工程计算中的40个问题及其算例分析,每个问题包括如下6个方面内容:,1)问题的背景和来源;2)典型算例介绍;3)不同计算模型简介;4)列举不同方法和软件计算结果;5)对计算结果分析和比较;6)结论和建议。,一、偏心算例,工程名:梁托偏墙.prj,问题的背景:梁托墙,墙对梁有偏心时,对梁产生较大扭矩,为何有些计算算不出梁扭矩和柱弯矩?,算例:1)墙对梁的偏心100mm;2)在墙上布置50kN/m的荷载,模拟上面还有多层墙;3)考证有偏心计算的计算精度。,工程计算中有大量的偏心存在,偏心引起的弯扭较大,偏心计算是当前计算中的难点。(刚度和力),计算模型:1)GSSAP采用偏心刚域方法计算;2)SATWE采用没有人工布置刚性梁方法。3)SATWE采用人工布置刚性梁方法。,不同方法和软件计算结果:,分析和比较:1)GSSAP偏心刚域方法与理论结果完全吻合;2)SATWE没有人工布置刚性梁时,无扭矩,结果有问题;3)SATWE人工布置刚性梁时,刚梁长取偏心100mm,结果有较大误差,随刚梁长度增大误差减小,梁长度要求大于300mm。结论和建议:1)GSSAP偏心刚域方法可以准确计算扭矩,按实际模型输入偏心墙即可;2)SATWE必须梁墙间人工加刚性梁,要注意刚梁长度控制。,罚约束应用不合理,引起力不平衡。,偏心刚域方法:当多个节点之间的运动关系为刚体运动时,其中一个节点作为计算节点,其它节点的刚度变换到计算节点即可。,两墙肢与柱相交,墙的两节点和柱节点之间刚体运动,柱节点为计算节点,墙的节点刚度变换后凝聚到计算节点,这种方法在理论和实践上能准确计算各种偏心情况。在所有的软件中,GSSAP第1次按偏心刚域方法对所有偏心实现了自动处理,没有完全按此方法就是就会有问题。,详细的计算过程:1)构件形成计算单元时,有两个节点:单元节点和计算节点,两个节点位置可不同;2)单元节点和计算节点的关系由构件的位置和截面大小决定;3)在所有单元刚度组集到总刚时,单元节点的刚度经过坐标变换后组集到计算节点。,为什么这么多年各计算软件没有完全实现偏心计算?1)建筑结构问题复杂就是关系复杂。2)构件的位置和截面来决定偏心关系;3)有限元计算包括:数值计算和关系计算;4)结构化有限元-面向对象有限元;5)Fortran-C+;,2.工程名:两柱两梁.prj,问题的背景:两根梁同时搭接在两根柱上,以往有两种计算方法:1)把柱当墙输入;2)梁端与柱中之间加刚梁。采用方法1会影响柱的内力调整和截面计算,对柱配筋需人工处理;采用方法2输入较繁琐,有内外力不平衡的现象。,算例:两柱托两梁,在其中一根梁上布置50kN/m的均布荷载,工业结构中常见到的一种情况。,不同方法和软件计算结果:,分析和比较:1)偏心刚域方法与理论结果完全吻合;2)加刚梁会产生内外力不平衡的现象,柱的弯矩偏小。结论和建议:GSSAP偏心刚域方法可以准确计算,按实际模型输入梁的偏心即可。,计算模型:1)GSSAP采用偏心刚域方法计算。2)SATWE采用人工布置刚梁方法(刚梁长350mm)。,3.工程名:梁托两墙.prj,问题的背景:转换大梁同时托两片剪力墙,以往的常用软件无法计算。,算例:1)在其中一条墙上布置50kN/m的荷载;2)计算梁的扭矩和柱的弯矩。,不同方法和软件计算结果:,分析和比较:1)偏心刚域方法与理论结果完全吻合;2)SATWE人工布置刚性梁时,刚梁长取偏心150mm,结果有较大误差。结论和建议:GSSAP偏心刚域方法可以准确计算,按实际模型输入墙的偏心即可。,计算模型:1)GSSAP采用偏心刚域方法计算。2)SATWE采用人工布置刚梁方法。,4.工程名:梁托垂墙.prj,问题的背景:转换大梁托L形、Z形墙时,所托墙有垂直于梁的部分,以往处理方法是墙下加刚梁,输入繁琐。,算例:1)在垂直于梁的墙上布置20kN/m的荷载;2)计算梁的扭矩和柱的弯矩。,不同方法和软件计算结果:,分析和比较:两种方法计算结果与理论结果一致。结论和建议:采用墙下加刚性梁计算方法操作较麻烦,最好是采用偏心刚域方法,按实际模型输入垂直墙即可。,计算模型:1)GSSAP采用偏心刚域方法计算。2)SATWE采用人工布置刚梁方法。,5.工程名:墙端柱.prj,问题的背景:当墙端或墙中柱与剪力墙有较大偏心时,计算软件对偏心处理有无问题?,算例:1)在柱顶上布置1000kN的集中活荷载;2)计算墙和柱的弯矩。,不同方法和软件计算结果:,分析和比较:1)3个软件能保证轴力平衡;2)偏心刚域方法保证基底弯矩平衡;3)SATWE墙柱无偏心时基底弯矩平衡,有偏心时不平衡。结论和建议:GSSAP偏心刚域方法可以准确计算,按实际柱对墙的偏心输入柱即可。,计算模型:GSSAP采用偏心刚域方法计算。,6.工程名:柱托多柱.prj,问题的背景:在伸缩缝处常见一柱托两柱情况,加刚性梁计算有何问题?,算例:1)在层2柱顶上分别布置1000kN和2000kN的集中活荷载;2)查看柱底内力情况。,不同方法和软件计算结果:,分析和比较:1)偏心刚域方法与理论结果完全吻合;2)SATWE计算由于刚性梁(长300mm)的影响,会产生弯矩和剪力不平衡的现象。结论和建议:GSSAP偏心刚域方法可以准确计算,按实际的偏心输入柱即可,无需其它柱间加刚性梁等特殊计算方法。,计算模型:1)GSSAP采用偏心刚域方法计算。2)SATWE采用人工布置刚梁方法。,1)在实际工程中,存在大量的偏心,柱跟柱、墙跟柱、梁跟墙柱,包括板跟墙柱梁,都存在这种情况;2)偏心刚域方法在理论和实践上能准确计算所有偏心情况,这是没有任何争议的;3)在一个软件中如果对所有偏心没有完全实现这个方法,计算肯定有问题,如SATWE和SSW等软件,很多方面就没有这样做。4)GSSAP在国内外所有软件中第1个完全实现了这种方法,自动处理,不需人工干预。,二、标高算例,1)计算层位移和层刚度时有层的概念(楼层Z向位置);2)计算周期和内力时无层的概念(构件Z向位置);3)要计算两次,分别得出宏观结果和微观细部结果。,工程中梁板的相对标高并不都为0,以往计算常常不考虑标高的影响,计算结果与实际情况有很大区别。,工程名:梁标高.prj,问题的背景:当梁下沉并且下沉高度大于梁高时,以往各软件都把梁拉到楼层平面上计算,这种不考虑梁下沉影响的处理方法导致计算结果有较大误差。,算例:梁下沉1000mm。,不同方法和软件计算结果:,分析和比较:是否增加节点对下沉梁及相交柱计算结果影响较大。结论和建议:1)计算程序应准确考虑梁标高对计算结果的影响;2)特别注意:通过修改标高来输入错层结构时,软件应按照实际模型计算。,计算模型:1)GSSAP中自动在柱跨中增加节点;2)将梁拉到楼层平面上计算,不增加柱跨中节点。,2.工程名:板标高.prj,问题的背景:同一楼面不同区域板标高相差较大时,以往简化计算将板拉到同一楼层平面,计算结果有什么问题?,算例:板下沉1000mm。,不同方法和软件计算结果:,分析和比较:1)振型5两刚板分别扭动,振型6两刚板反向在X向平动;2)将板拉到同一楼层平面计算不出振型5和6。结论和建议:应按楼板的实际标高建模并按弹性板参与计算,否则水平位移及构件内力可能有较大误差。,计算模型:GSSAP计算中,自动将标高不在楼面的板按照弹性板计算。,振型5,振型6,3.工程名:斜屋面1.prj,问题的背景:对于起坡屋面,以往处理办法是将斜屋面拉平并加大荷载来计算,计算结果与实际情况相差较大,如何解决?,算例:中间起坡高度2000mm。,不同方法和软件计算结果:,分析和比较:1)采用GSSAP和ETABS计算是正确的。2)实际模型与将斜屋面拉平加大荷载方法的计算结果相比,梁弯矩减少,柱的弯矩增大,结果相差较大。结论和建议:应采用实际模型计算此类斜屋面结构。,计算模型:1)GSSAP中采用实际标高,板自动采用膜元计算;2)ETABS中采用实际标高,板选择采用膜元计算;3)SATWE中将斜屋面拉平加大荷载来计算;4)SSW中将斜屋面拉平自动加大荷载来计算。,4.工程名:斜屋面2.prj,问题的背景:坡屋面下有水平梁连接,边沿只有一条梁,这种模型以往常用软件不能计算,如何准确计算?,算例:1)中间起坡高度2000mm;2)连接的水平梁按斜梁输入。,不同方法和软件计算结果:,分析和比较:GSSAP与ETABS计算结果一致。结论和建议:应采用实际模型计算此类斜屋面结构。,计算模型:1)GSSAP中采用实际标高,板自动采用膜元计算;2)ETABS中采用实际标高,板选择采用膜元计算。,5.工程名:体育馆.prj,问题的背景:体育馆看台有大量斜梁斜板,结构设计软件有无方便的计算方法?,算例:圆弧结构,改柱顶相对标高分别为:0mm,-1000mm,-2000mm,-3000mm。,不同方法和软件计算结果(恒载作用下):,分析和比较:GSSAP与ETABS结果基本吻合。结论和建议:GSSAP采用修改柱顶标高的方式创建大量斜梁斜板,是目前计算体育馆看台最方便的方法。,计算模型:1)GSSAP中,实际模型(板自动采用膜元)输入;2)ETABS中,实际模型(板指定采用膜元)输入。,广东自行车馆,1、标高问题大量存在,像夹层、梯梁和错层等等;2、以往软件拉平计算存在很大误差;3、GSSAP自动处理标高问题,高度智能化,保证准确性,达到人人都能用通用计算的目的。,三、空间应力分析,平面应力计算问题:1)导荷可能不准确;2)考虑不了空间变形的影响;3)考虑不了动力特性,抗震计算可能不准确。,以往计算主要采用杆系计算,开发了三个壳单元可扩展到空间应力分析:1)墙采用墙壳;(SAP84)2)板采用板壳;(ETABS)3)梁采用梁壳。(GSSAP),空间梁壳单元的难点:1)准确剖分;2)与相邻墙柱梁板节点关系;3)应力积分得到的梁弯矩、剪力和轴力保持内外力平衡。,工程名:空间应力.prj,问题的背景:深受弯构件若只抽取部分平面内构件进行平面应力分析计算难以保证准确性,能否在结构整体计算时自动按空间应力分析?,算例:梁上托墙。,不同方法和软件计算结果:,分析和比较:1)GSSAP和平面应力计算结果一致;2)ETABS壳与柱相连偏刚。结论和建议:1)在GSSAP中具有墙壳、板壳和梁壳,可以进行空间应力分析;2)空间整体分析避免了平面应力中导荷的问题。,计算模型:1)GSSAP中,墙采用墙壳,梁采用梁壳计算;2)平面应力,墙梁柱都采用平面应力元;3)ETABS中,墙和梁采用墙壳。,2.工程名:局部应力.prj,问题的背景:以往建筑结构计算软件不能计算局部应力,如墙上开洞,难以准确计算连梁两端的应力分布情况。,算例:1)如右图,5层双肢墙,每层水平作用1000kN集中活荷载。2)指定连梁采用壳单元。,不同方法和软件计算结果(活载作用下):,分析和比较:GSSAP和ETABS结果一致。结论和建议:梁采用壳单元,可以准确计算梁应力分布情况。,计算模型:1)GSSAP中,连梁计算单元指定壳元;2)ETABS中,墙开洞,再细分单元。,3.工程名:开洞梁.prj,问题的背景:开洞削弱了梁刚度,如何计算真实的应力和内力?,算例:如右图在梁两侧开两个500X500的洞口。,不同方法和软件计算结果(活载作用下):,分析和比较:1)GSSAP与ETABS位移结果一致。2)GSSAP梁积分出的力内外平衡,ETABS应力无法直接采用。结论和建议:若梁上洞口对梁刚度较大影响,可以选择GSSAP梁开洞壳元计算梁。梁壳是GSSAP开创性的一个工作。,计算模型:1)GSSAP中,梁采用壳元,自动考虑开洞梁单元剖分及对刚度影响。2)ETABS中,梁采用墙开洞壳元计算。,4.工程名:变截面梁.prj,问题的背景:变截面梁如何进行空间结构应力和内力分析?,算例:梁两端有支托。,不同方法和软件计算结果(恒载作用下):,分析和比较:变厚度壳计算结果合理,可应用于实际工程。结论和建议:可采用空间应力分析计算变截面深受弯构件。引入梁壳以后,平面应力完全可以被空间应力取代了。,计算模型:1)GSSAP采用变截面杆(分别考虑梁端、柱端重叠刚域)2)GSSAP采用变截面杆(不考虑重叠刚域)3)变厚度壳计算(梁端截面上下有两节点与柱协调)。,5.工程名:板托柱.prj,问题的背景:常用软件不能在空间整体分析中直接计算厚板转换柱,一般将板简化为扁梁来支托柱,能否直接在空间整体分析中计算?,算例:1)板上托柱;2)在柱顶上布置1000kN的集中活荷载。,不同方法和软件计算结果:,分析和比较:1)GSSAP和ETABS结果一致;2)GSSAP的板壳单元对剖分敏感性小于ETABS。结论和建议:1)板剖分长度2000mm;2)验算应力和内力时应取柱边值,避免取应力集中处计算结果。,计算模型:GSSAP和ETABS中板采用壳元计算。,6.工程名:板托墙.prj,问题的背景:常用软件不能在空间整体分析中直接计算厚板转换墙,一般将板简化为扁梁来支托墙,能否直接在空间整体分析中计算?,算例:1)板上托墙;2)在墙顶上分别布置500kN/m的线活荷载。,不同方法和软件计算结果:,分析和比较:GSSAP和ETABS计算结果基本一致。结论和建议:1)板剖分长度2000mm;2)验算应力和内力应取墙边值,避免取应力集中处计算结果。,计算模型:GSSAP和ETABS中板采用壳元计算。,7.工程名:平底水池.prj,问题的背景:以往将楼顶水池单独建模采用国内外通用有限元分析,不能方便地与整个结构一起进行应力和内力分析,当前常用软件能否计算?,算例:水池底板上布置30kN/m2水荷载,水池壁30kN/m2三角形布置水荷载。,不同方法和软件计算结果(水作用工况下):,分析和比较:GSSAP与ETABS计算结果基本吻合。结论和建议:在GSSAP中能方便地将水池与整个结构一起进行应力和内力分析。,计算模型:1)GSSAP中,板和墙采用壳元计算;2)ETABS中,板和墙采用壳元计算。,8.工程名:尖底水池.prj,问题的背景:水池底可放水,底板为锥形,目前常用计算软件不能方便地进行应力和内力分析。,算例:水池底板上布置30kN/m2水荷载,水池壁30kN/m2三角形布置水荷载。,不同方法和软件计算结果(水作用工况下):,分析和比较:GSSAP与MIDAS计算结果基本吻合。结论和建议:在GSSAP中能方便地与整个结构一起进行应力和内力分析。,计算模型:1)GSSAP中,板和墙采用壳元计算;2)MIDAS中,板和墙采用壳元计算。,9.工程名:筒仓.prj,问题的背景:尖顶或圆顶的筒仓,常用结构设计软件能否进行应力和内力分析。,算例:筒仓尖顶相对标高为1000mm,筒仓壁作用30kN/m2均布水荷载。,不同方法和软件计算结果(恒载作用下):,分析和比较:GSSAP与ETABS计算结果基本吻合。结论和建议:在GSSAP中能方便地将筒仓结构与整个结构一起进行应力和内力分析。,计算模型:1)GSSAP中,板和墙采用壳元计算;2)ETABS中,板和墙采用壳元计算。,1、规范要求进行平面应力和细部应力计算,象深受弯构件、水池和筒仓等;2、以前,象SATWE和SSW不能算这类问题,现在,GSSAP同时具有:墙壳、板壳和梁壳单元,以进行完整的空间应力分析;3、空间应力分析完全可以取代平面应力分析,使计算软件发展到新的时代:除了有内力计算外,还具有了应力分析功能。,四、荷载算例,1.工程名:9部吊车.prj,问题的背景:工业厂房当吊车数目较多时,布置的工况数多达几百,超过了现有国内外各软件的计算容量,要找出一种实用计算方法。,算例:去年遇到的一个实际工程:1)9部吊车;2)每部吊车每条轨道经过11根柱;3)1个柱位4个吊车工况;4)仅吊车工况数:9X11X4=396。,计算模型:GSSAP中采用未合并工况和合并工况两种方法。1)未合并工况布置靠近柱1的3部吊车,计算柱1的内力,吊车有关的工况数为3*11*4=132个。2)合并工况(相隔5跨的工况合并在一起)布置9部吊车,每部吊车轨道经过的第6柱工况合并到第1柱的工况中,每部吊车有关的工况数最多为5*4=20个。工况数不随轨道经过的柱数增加而增加,总吊车工况数为9*20=180个。不同方法和软件计算结果:,分析和比较:随吊车增加,轴力和弯矩会适当增加,合并工况方法计算精度可以满足工程要求。结论和建议:大于3部吊车时,合并工况方法可以一次计算多台吊车。,问题的背景:模拟施工有很多方法,哪种方法能准确计算?,算例:20层框剪结构。,2.工程名:模拟施工.prj,计算模型:1)GSSAP中,模拟施工计算过程是变刚度和变荷载下的真实求解;2)SATWE中,对应3种模拟施工方法。,计算16层这根梁的梁端弯矩,不同方法和软件计算结果(恒载作用下):,一次性加载位移,GSSAP真实模拟施工位移,分析和比较:1)一次性加载和模拟施工有较大的差别;2)GSSAP真实模拟施工求解的结果准确;3)SATWE的模拟施工3结果可用,其它方法误差太大。结论和建议:1)模拟施工应采用真实模型求解;2)GSSAP墙柱梁板都可设置模拟施工号,可用于后浇计算。,模拟施工和后浇计算(精度和速度),1)准确的模拟施工计算,程序对于模拟施工的求解方法,不采用任何近似的方法,而是真正按施工过程的状态进行模拟计算,荷载和刚度两个都在变化的求解,结果合理。,2)后浇构件的计算(墙柱梁板自带模拟施工号),在框剪结构设计中,由于核心筒剪力墙与周围柱竖向变形差异大,与两者连接的梁在计算上往往承载力不够,设计上可考虑后浇施工。可设置墙柱梁板的模拟施工号实现后浇施工计算。,问题的背景:实际工程中,板上除布置均布荷载外,常需要布置板上线荷载(包括均布、分布和集中)。,算例:在板上建虚梁,板上线荷载简化为虚梁上的线荷载,板采用壳单元计算。,3.工程名:板上线荷.prj,计算模型:1)GSSAP中,实际模型(板选择采用壳元)输入。2)ETABS中,实际模型(板选择采用壳元)输入。,分析和比较:GSSAP与ETABS基本吻合。结论和建议:所有线荷载(均布、分布和集中)通过虚梁都可布置在板上,10年前广厦定义虚梁的概念,现各计算软件虚梁用于:1)剖分板;2)布置板上线荷载。,不同方法和软件计算结果(活载作用下):,采用壳元时,GSSAP中梁每1米会自动剖分1个节点。,问题的背景:风洞试验提供数据,每方向风作用有三个方向4个荷载分量:迎风面方向的风力、垂直迎风面的风力、竖向风力和竖向扭矩,如何使用风洞试验的风力进行计算。,算例:10层每层高为3000mm,0度方向风有三个方向4个荷载分量。,4.工程名:三向风载.prj,以往风荷只有迎风面方向的风力,计算模型:GSSAP计算入口文件*.gsp中可输入(0度风):,分析和比较:有垂直向位移和Z向转动。结论和建议:GSSAP可以计算风洞试验测得的每方向风有三个方向4个力。,不同方法和软件计算结果(0度方向风作用下):位移(mm)X=31.025Y=31.025Z=0.125旋转(弧长)X=-0.00039Y=0.00039Z=0.00205,风荷载作用问题,1)迎风面计算根据风荷载作用方向,将建筑外轮廓投影到垂直风荷载作用方向的平面,每一楼层的层高乘以楼层投影宽度就是迎风面积。这里注意,当楼层由多个刚性隔板组成时(互不连通)应分别计算每个刚板的投影宽度,否则风荷载会漏掉。,平面图,2)层风荷载的分配每个节点风荷载根据迎风面积分配,比其它计算软件作用于质心的方法更合理,两者顶点位移误差最大可达20%。,平面图,3)多方向的风荷载计算有斜交抗侧力构件的结构,当相交角度大于15时,在风荷载计算时也应分别计算各抗侧力构件方向的水平力作用。最多可输入8个风荷载方向,每个风荷载方向作为一个独立的工况参与内力组合。如0、90、180、2700和180分为两个工况。可以0度有风荷载作用而180度没有。,3塔结构的风荷方向8个方向:0,180,90,270,335,291,245,201。,风荷载方向输入,4)不同方向的风的基本风压、体型系数和自振周期不同,自振周期见计算结果文本输出周期和地震作用中2.平动系数和扭转系数,5)楼顶附属物的风荷载计算,1)梁柱上可输入每个风作用方向的体型系数和迎风宽度,墙板可输入每个风方向的体型系数和迎风面积;2)基本风压、风压高度变化系数和距地Z高度处风振系数按构件所在的层自动计算;,1)可同普通的静力荷载输入,只是工况要选择风荷载工况;2)按层导的风荷载和用户在构件布置的风荷载互相叠加。,6)侧风荷载计算,问题的背景:不考虑施工荷载首层易开裂,如何准确计算?,5.工程名:施工荷载.prj,1)高层建筑结构首层楼面宜考虑施工荷载,不宜小于10kN/m2;2)单独作为一个工况输入;3)墙柱梁板内力组合:1.0恒+1.0施工荷载G恒+1.0施工荷载,算例:如右图,首层板上布置10kN/m2施工荷载,包括自重的恒载为4kN/m2。,计算模型:GSSAP中施工荷载作为单独工况进行内力计算和工况组合。不同方法和软件计算结果:首层梁的弯矩和剪力由施工荷载组合控制。,结论和建议:施工荷载较大时,计算中应考虑施工荷载的计算和组合。,问题的背景:以往结构设计软件计算时没考虑飘板对梁产生的扭矩,如何自动算出梁扭矩。,算例:板飘出500mm,板采用壳单元计算。,6.工程名:飘板.prj,内板也应指定壳,否则梁扭矩偏大。,计算模型:1)GSSAP中板采用壳单元;2)ETABS中板采用壳单元。,分析和比较:GSSAP和ETABS结果一致。结论和建议:1)当飘板跨度较大时,应考虑飘板对梁扭矩的影响;2)梁柱板的其它结果与指定刚板时近似,没有问题。,不同方法和软件计算结果(恒载作用下):,问题的背景:板的刚度对梁的内力计算有多大影响?,算例:1层框架。,7.工程名:梁板关系.prj,计算此梁弯矩随刚度增大的变化,计算模型:1)梁刚度没有放大;2)梁刚度放大1.5;3)梁刚度放大2.0;4)板采用壳单元。不同方法和软件计算结果(恒载作用下):,分析和比较:中梁刚度放大2.0时与壳结果一致。结论和建议:1)总体信息中,中梁刚度放大系数一般为2.0;2)对梁高500mm的梁逐步减少;3)如确实要真实考虑板对梁刚度影响就全部板采用壳来算。,问题的背景:通常工程中,对于风荷计算,是否考虑连梁刚度折减有多大影响?,算例:10层框剪。,8.工程名:连梁刚度.prj,分析和比较:在风荷载作用下,考虑连梁刚度折减对楼层位移有明显影响。结论和建议:建议不考虑风荷载作用下的连梁刚度折减。,不同方法和软件计算结果(0度风作用下):,连梁的计算和设计,1)连梁自动判定条件:两端为剪力墙,至少一端墙轴线方向与梁相同(程序判断小于25度)且跨高比小于等于5;2)被虚柱打断的连梁能自动判定;3)超出自动判定的范围时,请修改梁属性中的设计类型,可指定连梁或去掉连梁指定;4)连梁的混凝土等级随各层信息时,连梁随墙的各层信息,连梁抗震等级随总信息时,随墙的总信息;5)当考虑连梁刚度折减时,只在地震分析中考虑,不能在静力和风荷载分析中折减连梁刚度,静力和风荷作用下连梁是不能开裂和破坏的,所以地震分析与静力或风分析的刚度是不同的,若不考虑这一点,墙内力计算结果偏小,框架结果偏大。,问题的背景:多层结构为何还要考虑风振影响?,算例:5层框架。,9.工程名:减少风荷.prj,2006建筑结构荷载规范7.4.1对于高度大于30m且高宽比大于1.5的房屋和基本自振周期大于0.25s的各种高耸以及大跨度屋盖结构,,计算模型:1)按建筑结构荷载规范50009-2001考虑风振影响;2)按建筑结构荷载规范50009-2006不考虑风振影响。,分析和比较:1)2006建筑结构荷载规范改正了2001版中不合理的条文,类似旧规范;2)多层结构中,以往多算了风荷载,梁柱钢筋可能过大。结论和建议:1)目前GSCADV13.0已按2006建筑结构荷载规范修改,请尽早采用,注意一下pkpm现在版本还没有改;2)对基本自振周期大于0.25s的各种高耸以及大跨度屋盖结构,人工在总体信息中增大基本风压。,不同方法和软件计算结果:,五、基础算例,工程名:扩展剪切.prj,问题的背景:为何有些软件中斜截面剪切验算控制扩展基础高度,使基础高度大了一级?,算例:如图(1)扩展基础,高度为600mm,基础底应力470kN/m2。,计算模型:如图(2)斜切和竖切计算剪切反力,反力大小有很大不同。到底应采用哪种方法计算反力。,斜切竖切(2),(1),不同方法和软件计算结果:按柱边斜切求的反力V=143.92kN剪切满足:0.7*h*ft*bo*Ho=0.7*1.00*1100.00*1.279*0.56=551.32V=143.92kN按柱边竖切求的反力V=565.04kN剪切不满足:0.7*h*ft*bo*Ho=0.7*1.00*1100.00*1.279*0.56=551.32V=565.04kN基础高度提高一级700mm,分析和比较:1)根据混凝土结构设计规范7.5.2斜截面剪切应按柱边斜切求反力;2)根据建筑结构基础设计规范扩展基础高度主要由冲切控制,没有斜截面剪切验算的要求。结论和建议:目前有些基础计算软件(morgain)过于保守。,问题的背景:为何有些基础软件中阶式扩展基础用钢量太大?,算例:如右阶式扩展基础。,2.工程名:最小配筋.prj,乘最小配筋率的截面面积包不包含台阶以外的面积,不同方法和软件计算结果:扣除台阶以外的截面面积=780000(mm2)包含台阶以外的截面面积=960000(mm2)实配钢筋9D14200(As=1385),分析和比较:1)以上第1种计算满足0.15%要求,第种计算不满足;2)根据混凝土结构设计规范9.5.1受力筋最小配筋率对应的面积按实际全截面计算。结论和建议:目前有些基础计算软件(比如pkpm)过于保守。,问题的背景:把双柱扩展基础的柱底力简化为集中力计算的误差多大?,算例:如下双柱扩展基础。,3.工程名:双柱扩展.prj,计算模型:1)简化集中力计算。2)通用有限元分析计算。不同方法和软件计算结果:,分析和比较:当柱底弯矩和剪力较大时两者误差较大。,结论和建议:如下多墙柱下的扩展基础应采用通用分析计算。,问题的背景:墙柱下桩基础用简化集中力计算的误差多大?,算例:如下墙柱下桩基础。,4.工程名:墙柱桩基.prj,计算模型:1)简化集中力计算。2)通用有限元分析计算。不同方法和软件计算结果:,分析和比较:当柱底弯矩较大时两者误差较大。结论和建议:如下多墙柱下的桩基础应采用通用分析计算。,有关的计算单元,每类基础所采用的计算单元:1、桩基础:板单元和桩单元;2、扩展基础:板单元、弹簧单元和普通梁单元;3、条形基础:弹性地基梁单元;4、平板式筏板基础:板单元和弹簧单元;5、梁板式筏板基础:板单元、普通梁单元和弹簧单元;6、无梁桩筏基础:板单元、桩单元和弹簧单元;7、有梁桩筏基础:板单元、普通梁单元、桩单元和弹簧单元;8、桩条基础:板单元、桩单元和普通梁单元。,1、3节点中厚板单元;2、4节点中厚板单元;3、带基床系数的弹性地基梁单元;4、普通梁单元;5、桩单元;6、弹簧单元。,六、其它算例,工程名:双层厂房.prj,问题的背景:双层厂房,一层无楼板,以前常用平框软件计算,空间分析软件能否计算?,算例:2层厂房,一层无板。,不同方法求底层中柱弯矩,计算模型:1)GSSAP中,楼面无限刚模型计算;2)GSSAP中,楼面实际模型计算;3)GSPK平面框架计算。不同方法和软件计算结果(恒载作用下):,GSSAP实际模型计算的位移,分析和比较:1)对无板楼面采用无限刚假设计算,不仅影响水平力作用结果,而且影响竖向力结果,平面无限刚假设完全不适用此类结构;2)GSSAP实际模型计算结果与平框软件计算相同。结论和建议:采用实际模型的空间结构分析软件GSSAP可代替平框软件计算。,问题的背景:斜撑下端水平梁应有轴力,为何计算无轴力?,算例:3层框架,2层有斜撑。,2.工程名:斜撑.prj,计算此梁内力,计算模型:1)GSSAP中,采用楼面无限刚假设。2)GSSAP中,采用实际模型(弹性模型)计算。不同方法和软件计算结果(恒载作用下):,分析和比较:楼面无限刚假设约束了梁轴向变形。结论和建议:1)有斜撑的结构,应采用实际模型计算;2)有关的板应采用膜或壳单元计算。,问题的背景:跨层支撑,在中间层相交处不打断,以往软件自动打断。,算例:2层框架,输入时两根斜柱和梁三者之间不相交。,3.工程名:跨层支撑.prj,中点不相交,计算模型:GSSAP中,按实际模型计算。不同方法和软件计算结果(活载作用下位移):,结论和建议:可以准确计算跨层支撑。,中点各自运动,问题的背景:构造柱与砖墙相连,砖墙刚度大,导致梁和构造柱计算弯矩太大,而构造柱常常构造配筋,隐含不安全因素。,算例:两边有砖墙,梁搭在构造柱上。,4.工程名:柱和砖墙.prj,计算模型:1)GSSAP中采用构造柱和砖墙非协调计算;2)GSSAP中采用构造柱和砖墙协调计算;3)SATWE中采用构造柱和砖墙协调计算,并且折减构造柱刚度。,不同方法和软件计算结果(活载作用下):,分析和比较:1)非协调计算,避免了砖墙刚度使梁和柱弯矩过大的情况;2)协调计算由于砖墙对柱约束作用不真实,使梁的负弯矩过大,同时也使构造柱的弯矩过大;3)SATWE通过折减构造柱刚度不能完全解决砖墙刚度影响过大的结果。结论和建议:构造柱和砖墙在空间分析中应采用非协调计算,多年工程应用证明方法可行。,问题的背景:混合结构中两柱之间梁托砖墙,梁计算内力太小。,算例:1层框架托2层砖墙。,5.工程名:梁托砖墙.prj,计算模型:1)GSSAP中采用底框(墙梁折减系数为0.6)计算;2)GSSAP中砖墙采用空间分析计算(弹性模量折减系数为0.2);3)SATWE中砖墙采用空间分析计算(弹性模量折减系数为0.2)。不同方法和软件计算结果(恒载作用下):,分析和比较:1)底框模型中砖墙导到梁上为均布荷载,计算模型比较粗;2)GSSAP托墙梁每1米自动加1节点,结果合理;3)SATWE模型中砖墙中间与梁的协调节点太少,使梁承担的荷载减少。结论和建议:砖墙采用GSSAP计算的结果可用于设计。,问题的背景:手工验算节点平衡为何常常不满足?,算例:1层框架。,6.工程名:节点平衡.prj,验算柱顶弯矩平衡情况,计算模型:1)无节点变换处理的空间分析(不考虑重叠刚域);2)只考虑梁柱重叠处梁的重叠刚域;3)只考虑梁柱重叠处柱的重叠刚域。不同方法和软件计算结果(恒载作用下):,分析和比较:1)考虑刚域时,计算输出的内力为刚域长度处的内力;2)剪力与平衡点有距离,弯矩平衡验算要考虑剪力的贡献。结论和建议:1)不管是否考虑刚域,同一工
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 室外停车场消防的应急预案 7篇
- 四川省宜宾八中2024-2025学年八年级(下)期末物理模拟试卷(二)(含答案)
- 江苏省常州市2024-2025学年七年级下学期期末考试数学试卷(含答案)
- 《汽车销售服务流程》知到智慧树答案
- 虚拟现实产业市场调查分析
- “数字人文”概论与实践知到智慧树答案
- DB4401-T 65-2020 娱乐场所安全防范工程技术规范
- 汉字书法课件模板-隶书
- 汉字“兴”的笔顺课件
- 永靖消防知识培训课件
- OptiStruct结构分析与工程应用
- 建筑工程常见施工质量通病及防治措施图文
- 家庭房产分割协议书
- 《液压与气动控制》课件
- GA/T 1280-2024银行自助设备安全性规范
- 带状疱疹后神经痛的诊治课件
- 火灾地震逃生演练课件
- 广东省深圳市2024-2025学年高一上学期期中考试数学试卷(含答案)
- 第6讲立体几何(2022-2023年高考真题)(原卷版)
- 中医耳针技术
- 山东省第二届化学分析检验人员行业职业技能竞赛理论试题库资料(含答案)
评论
0/150
提交评论