17.1勾股定理 ppt课件_第1页
17.1勾股定理 ppt课件_第2页
17.1勾股定理 ppt课件_第3页
17.1勾股定理 ppt课件_第4页
17.1勾股定理 ppt课件_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,17.1勾股定理,人教版八年级(下)第十七章,情境导入,读一读我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为周髀算经作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.,图1-1,图1-2,情境导入,勾股定理(1),学习目标:1.经历勾股定理的探究过程,体会数形结合的思想;2.能运用勾股定理解决一些简单问题.学习重点:探索并证明勾股定理学习难点:勾股定理的探究和证明.,毕达哥拉斯(公元前572-前492年),古希腊著名的哲学家、数学家、天文学家。相传有一次他在朋友家做客时,发现朋友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系,进而发现直角三角形三边的某种数量关系,我们也来观察右图的地面,你能发现A、B、C面积之间有什么数量关系吗?,SA+SB=SC,每块砖都是等腰直角三角形哦,(1)你能发现图2-1中三个正方形A,B,C的面积之间有什么关系吗?你是怎样得到这个关系的?,自主探究一,(2)你能用三角形的边长表示正方形的面积吗?,(3)你能发现直角三角形三边长度之间存在什么关系吗?与同伴进行交流。,阅读课本22页,思考下列问题,一般的直角三角形三边为边作正方形,自主探究二,思考:A,B,C的面积,直角三角形三边长度之间还有上述关系吗?怎样做的?,a,c,b,Sa+Sb=Sc,观察所得到的各组数据,你有什么发现?,猜想:两直角边a、b与斜边c之间的关系?,a2+b2=c2,a,c,b,观察所得到的各组数据,你有什么发现?,猜想两直角边a、b与斜边c之间的关系?,a2+b2=c2,Sa+Sb=Sc,A,B,C,问题2:式子SA+SB=SC能用直角三角形的三边a、b、c来表示吗?,问题4:那么直角三角形三边a、b、c之间的关系式是:,至此,我们在网格中验证了:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积,即SA+SB=SC,a2+b2=c2,a2+b2=c2,问题1:去掉网格结论会改变吗?,问题3:去掉正方形结论会改变吗?,a2+b2=c2,a,c,b,直角三角形两直角边的平方和等于斜边的平方.,勾,股,弦,勾股定理,(毕达哥拉斯定理),两千多年前,古希腊有个哥拉,斯学派,他们首先发现了勾股定理,因此,在国外人们通常称勾股定理为毕达哥拉斯,年希腊曾经发行了一枚纪念票。,定理。为了纪念毕达哥拉斯学派,1955,勾股世界,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。,我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中。,是不是所有的直角三角形都具有这样的结论呢?光靠实验和猜想还不能把问题彻底搞清楚。这就需要我们对一般的直角三角形进行证明下面我们就一起来探究,看一看我国古代数学家赵爽是怎样证明这个命题的,探讨交流,赵爽拼图证明法:,小组活动:仿照课本中赵爽的思路,只剪两刀,将两个连体正方形,拼成一个新的正方形.,ba,M,N,P,剪、拼过程展示:,用赵爽弦图证明勾股定理,=,c2=4ab/2+(b-a)2,=2ab+b2-2ab+a2,=a2+b2,a2+b2=c2,大正方形的面积可以表示为;也可以表示为,c2,4ab/2-(b-a)2,探讨交流,现在,我们已经证明了命题1的正确性,在数学上,经过证明被确认为正确的命题叫做定理,所以命题1在我国叫做勾股定理。,勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么a2+b2=c2,即:直角三角形两直角边的平方和等于斜边的平方。,两千多年前,古希腊有个哥拉,斯学派,他们首先发现了勾股定理,因此,在国外人们通常称勾股定理为毕达哥拉斯,年希腊曾经发行了一枚纪念票。,定理。为了纪念毕达哥拉斯学派,1955,勾股世界,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。,我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中。,用拼图法证明,S大正方形=(a+b)2=a2+b2+2abS大正方形=4S直角三角形+S小正方形=4ab+c2=c2+2ab,a2+b2+2ab=c2+2ab,a2+b2=c2,证法一:,1876年4月1日,伽菲尔德在新英格兰教育日志上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第20任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统证法”。,课堂练习,求下图中字母所代表的正方形的面积。,225,400,A,81,225,B,625,144,巩固练习,1.求下列图中表示边的未知数x、y、z的值.,81,144,x,y,z,做一做,巩固练习,做一做:,P,625,400,2,6,x,P的面积=_,X=_,225,B,A,C,AB=_,AC=_,BC=_,25,15,20,巩固练习,比一比看看谁算得快!,2.求下列直角三角形中未知边的长:,可用勾股定理建立方程.,方法小结:,8,x,17,16,20,x,12,5,x,做一做,巩固练习,、如图,一个高3米,宽4米的大门,需在相对角的顶点间加一个加固木条,则木条的长为(),A.3米B.4米C.5米D.6米,C,拓展延伸,、湖的两端有A、两点,从与A方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为(),A.50米B.120米C.100米D.130米,130,120,?,A,拓展延伸,如图,大风将一根木制旗杆吹裂,随时都可能倒下,十分危急。接警后“119”迅速赶到现场,并决定从断裂处将旗杆折断。现在需要划出一个安全警戒区域,那么你能确定这个安全区域的半径至少是多少米吗?,议一议:,9m,24m,拓展延伸,小结本节课学到了什么?,达标测试,a,b,c,a,b,c,在直角三角形中,已知两边可以求第三边,例1如图,在RtABC中,BC=24,AC=7,求AB的长。,在RtABC中,根据勾股定理,解:,例2已知等边三角形ABC的边长是6cm,(1)求高AD的长;(2)SABC,解:(1),ABC是等边三角形,AD是高,在RtABD中,根据勾股定理,例3如图,ACB=ABD=90,CA=CB,DAB=30,AD=8,求AC的长。,解:,ABD=90,DAB=30,BD=AD=4,在RtABD中,根据勾股定理,在RtABC中,,又AD=8,练习,1.在ABC中,C=90.,(1)若a=6,c=10,则b=;,(2)若a=12,b=9,则c=;,3.如图,在ABC中,C=90,CD为斜边AB上的高,你可以得出哪些与边有关的结论?,(3)若c=25,b=15,则a=;,2.等边三角形边长为10,求它的高及面积。,b,a,如图,在ABC中,AB=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论