




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2直线的两点式方程,解:设直线方程为:y=kx+b(k0),一般做法:,由已知得:,解方程组得:,所以,直线方程为:y=x+2.,待定系数法,方程思想,已知直线经过P1(1,3)和P2(2,4)两点,求直线的方程,还有其他的方法吗?,还有其他做法吗?,即:,得:y=x+2.,解:设P(x,y)为直线上不同于P1,P2的动点,与P1(1,3),P2(2,4)在同一直线上,根据斜率相等可得:,1.掌握直线的两点式方程及应用.(重点)2.了解直线方程截距式的形式特点及适用范围.3.两点式方程的建立,待定系数法的应用,综合性问题的解决.(难点),解:设点P(x,y)是直线上不同于P1,P2的点,可得直线的两点式方程:,所以,因为kPP1=kP1P2,记忆特点:,1.左边全为y,右边全为x.,2.两边的分母全为常数.,3.两边分子,分母中的减数分别相同.,已知两点P1(x1,y1),P2(x2,y2)(其中x1x2,y1y2),求通过这两点的直线方程,是不是已知任一直线中的两点就能用两点式写出直线方程呢?,注意:两点式不能用来表示平行于坐标轴或与坐标轴重合的直线的方程,那么两点式不能用来表示哪些直线的方程呢?,当x1x2或y1=y2时,直线P1P2没有两点式方程.(因为x1x2或y1=y2时,两点式方程的分母为零,没有意义),不是!,若点P1(x1,y1),P2(x2,y2)中有x1x2,或y1=y2,此时过这两点的直线方程是什么?,当x1x2时方程为:xx1或xx2,当y1=y2时方程为:y=y1或y=y2,y,解:将,的坐标代入两点式得:,例1已知直线与轴的交点为,与轴的交点为,其中,求直线的方程.,直线的截距式方程,直线方程由直线在x轴和y轴的截距确定,所以叫做直线方程的截距式方程.,在y轴上的截距,在x轴上的截距,截距式适用于横、纵截距都存在且都不为0的直线.,例2已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程.,解:过B(3,-3),C(0,2)的两点式方程为:,这就是BC边所在直线的方程.,中点坐标公式,例3求经过点P(-5,4),且在两坐标轴上的截距相等的直线方程.,分析:截距均为0时,设方程为y=kx;截距均不为0时,设为截距式求解.,O,解:当截距均为0时,设方程为y=kx,把P(-5,4)代入上式得即直线方程为当截距均不为0时,设直线方程为把P(-5,4)代入上式得直线方程为即综上:直线方程为或,截距为零不容忽视,1.若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为(),解:选B.依题意,设点P(a,1),Q(7,b),则有解得从而可知直线l的斜率为,3.求经过下列两点的直线方程:,2.直线ax+by=1(ab0)与两坐标轴围成的面积是_.,4.设直线l的方程为(a+1)x+y+2-a=0(aR).若直线l在两坐标轴上的截距相等,求直线l的方程.,解:当直线过原点时,该直线在x轴和y轴上的截距为零,显然相等.所以a=2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,得=a-2,即a+1=1,所以a=0,即直线方程为x+y+2=0.所以直线l的方程为3x+y=0或x+y+2=0.,不垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 锅炉主管安全培训试题及答案解析
- 游说世界:英语通行证-打造全球旅游交流的语言桥梁
- 护理基础知识1000题测试题库及答案解析
- 2025年中原科技乐理题库及答案
- 鲁滨逊读书测试题及答案
- 2025年信息安全管理考试题及答案解析
- 2025年临床路径考试题及答案
- 2025年食品检验工中级食品安全标准考试试卷含答案
- 2025年陕西航空职业技术学院学工部招聘模拟试卷及完整答案详解1套
- 2025河南省中医院(河南中医药大学第二附属医院)招聘博士研究生64人考前自测高频考点模拟试题附答案详解
- 24.1.1《圆》数学人教版九年级上册教学课件
- 汾酒白酒招商手册
- 甜米酒创业计划书
- 塔吊租赁服务技术实施方案技术标
- 员工组织承诺的形成过程内部机制和外部影响基于社会交换理论的实证研究
- 优质课件:几代中国人的美好夙愿
- 2023年真空镀膜机行业市场分析报告及未来发展趋势
- 物业礼仪规范培训方案
- 约谈记录表模板
- 外科护理学阑尾炎教案
- 广西佑太药业有限责任公司医药中间体项目环评报告书
评论
0/150
提交评论