




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
散布图(ScatterDiagram),1,目录,一、散布图概述二、散布图的绘图步骤三、作散布图的注意事项四、散布图的相关检验五、相关系数及其检验六、练习,2,1、定义:描述两个因素之间相关关系的图形,称为散布图,又叫相关图2、相关的概念:变量之间存在的关系,有下列几种还情况。完全相关关系:这种关系一般可用一个不变的数学公式来表达。相关关系:变量之间存在密切关系,但又不能由一个(或几个)变量的数值精确地求另一变量的数值,称这类变量的关系为相关关系。不相关:事物之间没有关系。,一、散布图概述,3,3、散布图的用途:用来发现和确认两组数据之间的关系并确定两组相关数据之间预期的关系。通过确定两组数据、两个因素之间的相关性,有助于寻找问题的可能原因。,一、散布图概述,4,二、散布图的绘图步骤,案例:表1-6列出了添加剂的重量与产出率的数据,请根据这些数据描绘出散布图并进行分析。,表1添加剂“A”的重量和相应的产出率,5,分析对象的选定,可以是质量特性值与因素之间的关系、质量特性值与质量特性值之间的关系、因素与因素之间的关系。本例选定的分析对象是添加剂的重量与产出率的关系,它们是因素与质量特性值之间的关系。2、收集数据,填入数据表。数据一般要在30组以上,且数据必须是对应的,并记录收集数据的日期、取样方法、测量方法等有关事项。案例收集了30组对应数据,1、选定分析对象,二、散布图的绘图步骤,6,为便于分析相关关系,两个坐标数值的最大值与最小值之间的范围应基本相等。见表2。若分析对象的关系,属于因素与质量特性值之间的关系,则X轴表示因素,Y轴表示质量特性值。,3、在坐标纸上建立直角坐标系,二、散布图的绘图步骤,Y,表2散布图的横、纵坐标的范围应基本相等,7,把数据组(X,Y)分别标在直角坐标系相应的位置上。如两组数据相同,其点子必重合,则用或表示;如三组数据相同,则用表示。,4、描点,二、散布图的绘图步骤,产出率百分比,3,8,当散布图上出现明显偏离其他数据点的异常点时,应查明原因,以便决定是否删除或校正。所谓异常点就是散布图上出现远离群点的点。对于这种点的出现,要查明原因。一般来说产生这种现象的原因是由于测量的误差、数据记录错误或操作条件的变化等。如查清确实属于上述等原因造成的,则应将这些点删除。如果原因不明,就不能删除,变量之间很可能包含着我们认识不到的规律。,4、描点,二、散布图的绘图步骤,5、记入必要信息,填写散布图标题、数据来源及其它必要事项。,9,三、作散布图的注意事项,1、明确在什么范围内相关当X在很小范围内提取时,即使X和Y之间有相关关系,有时也常常呈现不相关的状态,因此这时X需在足够大的范围提取。有时在试验条件下X、Y相关,而在实际生产条件下X、Y不相关,这样不能把相关的结论扩大至更广泛的范围内。,10,三、作散布图的注意事项,2、异常值的处理在散布图上如果出现下图所示的偏离集体很远的点,则该点可认为是异常值,有必要追究其原因。作为异常值的原因,除了测量差错或记录的疏忽外,常常是操作条件的变化造成的,由此可找到工序改进的线索。,异常值,11,三、作散布图的注意事项,3、分层的必要性在下图中,从全体座标点看不至相关,然而,从“*”与“”将座标点分层,则发现各自皆有相关。反之,整体好像相关,而分层后层内没有相关的情况存在,所以作散布图前应考虑分层,且以不同的记号表示分层后的座标点。,12,三、作散布图的注意事项,4、假相关有时存在这样的情况,观察散布图明明有相关,但从技术上看,直接提出的原因与结果之间都没有关系。比如,可能与民列原因之外的原因相关,而错误的认为与所列原因相关,这就叫假相关。,13,四、散布图的相关检验,绘出散布图后,应对其观察和分析,来判断两个变量之间的相关关系。散布图的定性分析一般有两种方法:1、对照典型图法对照典型图法是散布图分析中最粗略的分析法,把绘好的散布图与典型图对照,可判断出两个变量之间的相关关系。利用对照典型图法,可判断出案例添加剂“A”的重量与产出率之间存在着弱正相关关系。,14,四、散布图的相关检验,表4常见的散布图形状与分析,15,四、散布图的相关检验,2、符号检验法(中值法)符合检验法是利用“符号检验表”检查点子云的形态,以判断相关关系及其程度的一种定性分析方法。符号检验法的分析结果要比对照典型图法准确。符号检验法分析步骤(结合下表来说明)在散布图中作一条平行于X轴的中位线Q,平分散布图中所有的点子,使上下点子数基本相等。在散布图中作一条平行于Y轴的中位线P,平分散布图中所有的点子,使左右点子数基本相等。,16,四、散布图的相关检验,2、符号检验法(中值法),8.0,8.5,9.0,9.5,93,92,91,90,89,88,87,86,85,n,3,=10,n,1,n,4,n,2,=10,=5,=5,P,X(g),Y,Q,(%),散布图中位线,17,四、散布图的相关检验,2、符号检验法(中值法),令:n1+n3=n+;n2+n4=n-;s=Min(n+,n-),即s为n+、n-之中的最小值。查符号检验表得判断值S。在符号检验表中查得与n和相对应的判断值S。其中:n点数的总和(恰好在中位线上的点子不计算):n=n+n-。:显著水平,也称作风险度,是与置信度相对应的参数+=1。:一般取0.01、0.05,意谓着判断错误的风险率是0.01(1%)和0.05(5%)若有:SS,判为强相关(显著相关)SS,判为弱相关(不显著相关)。,18,四、散布图的相关检验,2、符号检验法(中值法),总判断:结合的判断结论作出总判断。对于上表的案例:S=10,查右表知:S=9,因为SS,所以添加剂”A“的重量和产出率是弱正相关。,19,五、相关系数及其检验,1、相关系数的定义。相关系数:表示两个变量x与y的相关程度。,式中r为相关系数,(X-X)为X的离均差平方和,(Y-Y)为Y的离均差平方和,(X-X)(Y-Y)为X与Y的离均差乘积之和,简称离均差积之和,此值可正可负。以此式为基础计算相关系数的方法称积差法。,2,2,20,五、相关系数及其检验,r值,r接近-1,r接近+1,(+)正的相关关系()负的相关关系接近0时几乎没有相关关系,为调查相关关系,需要数据构造为成对的2个变量数据,21,五、相关系数及其检验,一般表示为(总体的相关关系),其范围是11,一般情况下我们无法知道的正确的值,因此使用从样本推断的值r.r从如下公式得出且范围是-1r1.一般样本大小(30个以上)为基准如果|r|0.80时具有强的相关关系如果0.3|r|0.80时具有弱的相关关系.如果|r|0.515这说明纤维的拉伸倍数与强度有相关性。,28,五、相关系数及其检验,4、相关系数的检验,通过相关系数的计算,可以了解两个质量特性数据之间是否存在相互关系,以及推测相关程度,为了进一步明确它们之间存在怎样的关系,还需要求出回归方程式,通过回归方程式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 司法专业素质考试题及答案
- 2021届贵州省毕节市高三三模语文试题
- 培训岗位专业笔试题目及答案
- 2025至2030中国酯交换脂肪行业项目调研及市场前景预测评估报告
- 2025至2030中国帽子行业项目调研及市场前景预测评估报告
- 酒店集团空调系统统一保养与维修服务协议
- 离婚谈判策略分析-三招击中对方心理软肋合同
- 通信企业客户信息保密及通信服务合同
- 离婚协议书财产分割与子女抚养权确定协议样本
- 离婚纠纷调解协议书及财产分配执行保证书
- 医疗损害责任界定-洞察及研究
- 2025版施工合同主体变更与工程竣工结算协议
- 浙江省G12名校协作体2025学年第一学期9月高三上学期开学联考生物试卷
- 人民防空防护设备管理办法
- 2025年海南省社区工作者招聘考试笔试试题(含答案)
- 选矿技术基础知识培训课件
- 2025年全国中学生天文知识竞赛考试题库(含答案)
- 2025至2030中国空间机器人学行业项目调研及市场前景预测评估报告
- 筠连王点科技有限公司3万吨-年复合导电浆料配套10吨-年碳纳米管粉体项目环评报告
- 2025年江苏省档案职称考试(新时代档案工作理论与实践)历年参考题库含答案详解(5套)
- 2025年高考英语全国一卷真题(含答案)
评论
0/150
提交评论