免费预览已结束,剩余33页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OptimizationLecture2,MarcoHaanFebruary21,2005,2,Lastweek,Optimizingafunctionofmorethan1variable.Determininglocalminimaandlocalmaxima.Firstandsecond-orderconditions.Determiningglobalextremawithdirectrestrictionsonvariables.,Thisweek,Constrainedproblems.TheLagrangeMethod.InterpretationoftheLagrangemultiplier.Second-orderconditions.Existence,uniqueness,andcharacterizationofsolutions.,3,Supposethatwewanttomaximizesomefunctionf(x1,x2)subjecttosomeconstraintg(x1,x2)=0.Example:AconsumerwantstomaximizeutilityU(x1,x2)=x1x2subjecttobudgetconstraint2x1+3x2=10.Inthiscase:f(x1,x2)=x1x2andg(x1,x2)=102x13x2.,4,Supposethat,fromg(x1,x2)=0wecanwritex2=(x1).Takethetotaldifferential:dx2=(x1)dx1Also:g1(x1,x2)dx1+g2(x1,x2)dx2=0,Wewanttomaximizef(x1,x2)subjecttog(x1,x2)=0.,Hence:,Wecannowwritetheobjectivefunctionas:,WeveseenthisinMicro1!,5,Theorem13.1,If(x1*,x2*)isatangencysolutiontotheconstrainedmaximizationproblem,thenwehavethatx1*andx2*satisfy,6,Backtotheexample,f(x1,x2)=x1x2andg(x1,x2)=102x13x2.Weneed,So,With,Hence,Thisyields,Note:thisonlysaysthatthisisalocaloptimum.,7,LagrangeMethod,Again,wewantto,Considerthefunction,Thefirsttwoequalitiesimply,Letsmaximizethis:,Hence,wegetexactlytheconditionsweneed!,8,Definition13.2,TheLagrangemethodoffindingasolution(x1*,x2*)totheproblem,consistsofderivingthefollowingfirst-orderconditionstofindthecriticalpoint(s)oftheLagrangefunction,whichare,9,Backtotheexample,f(x1,x2)=x1x2andg(x1,x2)=102x13x2.,Again,thisonlysaysthatthisisalocaloptimum.,10,Themethodalsoworksforfindingminima.(Definition13.2),TheLagrangemethodoffindingasolution(x1*,x2*)totheproblem,consistsofderivingthefollowingfirst-orderconditionstofindthecriticalpoint(s)oftheLagrangefunction,whichare,11,Theinterpretationof*,*istheshadowpriceoftheconstraint.Ittellsyoubyhowmuchyourobjectivefunctionwillincreaseatthemarginasthetheconstraintisrelaxedby1unit.Later,wegointomoredetailsastowhythisisthecase.Intheconsumptionexample,wehadincome10and*=0.204.Thistellsusthatasincomeincreasesby1unit,utilityincreasesby0.204units.Inthisexample,thisisnotveryinformative,asthe“amountofutility”isnotaveryinformativenumber.Yet,inthecaseofe.g.afirmmaximizingitsprofits,thisyieldsinformationthatismuchmoreuseful.,12,TheLagrangemethodoffindingasolution(x1*,.,xm*)totheproblem,consistsofderivingthefollowingfirst-orderconditionstofindthecriticalpoint(s)oftheLagrangefunction,whichare,Italsoworkswithmorevariablesandmoreconstraints.(Definition13.3),13,Second-OrderConditions,Withregularoptimizationinmoredimensions,weneededsomeconditionsontheHessian.,WenowneedthesameconditionsbutontheHessianoftheLagrangefunction.,ThisistheBorderedHessian.,14,Theorem13.3,AstationaryvalueoftheLagrangefunctionyieldsamaximumifthedeterminantoftheborderedHessianispositive,minimumifthedeterminantoftheborderedHessianisnegative.,15,Againbacktotheearlierexample,f(x1,x2)=x1x2andg(x1,x2)=102x13x2.,Evaluatein,Thus,wenowknowthatthisisalocalmaximum.,16,Withmorethantwodimensions.(Theorem13.4),IfaLagrangefunctionhasastationaryvalue,thenthatstationaryvalueisamaximumifthesuccessiveprincipalminorof|H*|alternateinsigninthefollowingway:,Itisamaximumifalltheprincipalminorsof|H*|arestrictlynegative.,Note:Boththeoremsonlygivesufficientconditions.,17,Theorem13.6,TheLagrangemethodworks(infindingalocalextremum)ifandonlyifitispossibletosolvethefirst-orderconditionsfortheLagrangemultipliers.,18,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,19,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,fiscontinuousifitdoesnotcontainanyholes,jumps,etc.Youcannotmaximizethefunctionf(x)=1/xontheinterval-1,1.Butyoucanmaximizethefunctionf(x)=1/xontheinterval1,2.,20,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,Xisnonemptyifitcontainsatleastoneelement.Otherwisetheproblemdoesnotmakesense.Ifthereisnovalue,thereisalsonomaximumvalue.,21,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,XisclosediftheendpointsoftheintervalarealsoincludedinX.0x1isanopenset.Itisnotaclosedset.0x1isaclosedset.Youcannotmaximizethefunctionf(x)=xontheinterval0x0.,23,Butwhencanwebesurethatalocalextremumisalsoaglobalone!?,Notalways.,g(x),fincreases,notaglobalmaximum,globalmaximum,24,Togiveaformalderivation,weneedsomemoremathematics.,ConvexsetConsidersomesetX.TakeanytwopointsinX.Drawalinebetweenthesepoints.IftheentirelineiswithinX,andthisistrueforanytwopointsintheset,thenthesetisconvex.,Convexset,Notaconvexset,25,Note,A“convexset”issomethingentirelydifferentthana“convexfunction”.Thereisnosuchthingisa“concaveset”.,26,Togiveaformalderivation,weneedsomemoremathematics.,Quasi-concavityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-concave.,x1,Thisfunctionisquasi-concave,butnotconcave!,27,Togiveaformalderivation,weneedsomemoremathematics.,x1,Thisfunctionisnotquasi-concave.,Quasi-concavityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-concave.,28,Togiveaformalderivation,weneedsomemoremathematics.,Quasi-convexityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-convex.,x1,Thisfunctionisquasi-convex,butnotconvex!,29,Quasi-convexityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-convex.,x1,Thisfunctionisnotquasi-convex.,Togiveaformalderivation,weneedsomemoremathematics.,30,Importanttonote.,Afunctionthatisconcave,isalsoquasi-concave.Afunctionthatisconvex,isalsoquasi-convex.Inalmostallofthecasesweruninto,wellhaveconvexandconcavefunctions.Notealsothatautilityfunctionthatisstrictquasi-concaveifandonlyifityieldsindifferencecurvesthatarestrictlyconvex.,31,Theorem13.7,Inaconstrainedmaximizationproblem,Iffisquasiconcave,allgsarequasiconvex,thenanylocallyoptimalsolutiontotheproblemisalsogloballyoptimal.Thus,iftheseconditionsaresatisfied,solvingtheLagrangeyieldstheglobaloptimum!,32,Theorem13.8:Uniqueness,Inaconstrainedmaximizationproblem,wherefandallthegsareincreasing,theniffisstrictlyquasiconcaveandthegsareconvex,orfisquasiconcaveandthegsarestrictconvex,thenalocallyoptimalsolutionisuniqueandalsogloballyoptimal.Example:theconsumerproblem!Utilityfunctionisincreasingandstrictlyquasi-concave,Budgetconstraintisincreasingandconvex.ThetheoremsaysthatsolvingtheFOCsyieldsauniquean
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高中一年级化学上学期模拟冲刺卷
- 初中双减工作总结
- 2025年管理综合医学试题及答案
- 江苏省公务员2025年行政职业能力测试真题卷
- 2025年急性喉炎护理试题及答案
- 2025年超声影像模拟试题及答案
- 2025年二甲评审院感应知应会试题及答案(共180题)
- 河南省2025年公务员数量关系强化卷
- 2025年北京市公务员申论冲刺卷
- 2025购物中心店铺租赁合同
- 软件测试与质量保证课件 第1章 软件测试基础
- 2025江苏南通市通州区石港镇招聘便民服务中心人员2人考试笔试备考题库及答案解析
- 电力设计安全相关课件
- 2025四川南充市嘉陵城市发展集团有限公司招聘10人备考考试题库附答案解析
- 《公路工程集料试验规程》JTG 3432-2024新旧规范对比(细集料、填料)
- 企业建扶贫车间申请书
- 季度安全生产工作会议
- Unit1作文专项人教版九年级英语全册
- 2025四川成都新都投资集团有限公司招聘23人笔试参考题库附带答案详解
- 麦克白课件教学课件
- 电动液压车安全培训内容课件
评论
0/150
提交评论