




免费预览已结束,剩余33页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OptimizationLecture2,MarcoHaanFebruary21,2005,2,Lastweek,Optimizingafunctionofmorethan1variable.Determininglocalminimaandlocalmaxima.Firstandsecond-orderconditions.Determiningglobalextremawithdirectrestrictionsonvariables.,Thisweek,Constrainedproblems.TheLagrangeMethod.InterpretationoftheLagrangemultiplier.Second-orderconditions.Existence,uniqueness,andcharacterizationofsolutions.,3,Supposethatwewanttomaximizesomefunctionf(x1,x2)subjecttosomeconstraintg(x1,x2)=0.Example:AconsumerwantstomaximizeutilityU(x1,x2)=x1x2subjecttobudgetconstraint2x1+3x2=10.Inthiscase:f(x1,x2)=x1x2andg(x1,x2)=102x13x2.,4,Supposethat,fromg(x1,x2)=0wecanwritex2=(x1).Takethetotaldifferential:dx2=(x1)dx1Also:g1(x1,x2)dx1+g2(x1,x2)dx2=0,Wewanttomaximizef(x1,x2)subjecttog(x1,x2)=0.,Hence:,Wecannowwritetheobjectivefunctionas:,WeveseenthisinMicro1!,5,Theorem13.1,If(x1*,x2*)isatangencysolutiontotheconstrainedmaximizationproblem,thenwehavethatx1*andx2*satisfy,6,Backtotheexample,f(x1,x2)=x1x2andg(x1,x2)=102x13x2.Weneed,So,With,Hence,Thisyields,Note:thisonlysaysthatthisisalocaloptimum.,7,LagrangeMethod,Again,wewantto,Considerthefunction,Thefirsttwoequalitiesimply,Letsmaximizethis:,Hence,wegetexactlytheconditionsweneed!,8,Definition13.2,TheLagrangemethodoffindingasolution(x1*,x2*)totheproblem,consistsofderivingthefollowingfirst-orderconditionstofindthecriticalpoint(s)oftheLagrangefunction,whichare,9,Backtotheexample,f(x1,x2)=x1x2andg(x1,x2)=102x13x2.,Again,thisonlysaysthatthisisalocaloptimum.,10,Themethodalsoworksforfindingminima.(Definition13.2),TheLagrangemethodoffindingasolution(x1*,x2*)totheproblem,consistsofderivingthefollowingfirst-orderconditionstofindthecriticalpoint(s)oftheLagrangefunction,whichare,11,Theinterpretationof*,*istheshadowpriceoftheconstraint.Ittellsyoubyhowmuchyourobjectivefunctionwillincreaseatthemarginasthetheconstraintisrelaxedby1unit.Later,wegointomoredetailsastowhythisisthecase.Intheconsumptionexample,wehadincome10and*=0.204.Thistellsusthatasincomeincreasesby1unit,utilityincreasesby0.204units.Inthisexample,thisisnotveryinformative,asthe“amountofutility”isnotaveryinformativenumber.Yet,inthecaseofe.g.afirmmaximizingitsprofits,thisyieldsinformationthatismuchmoreuseful.,12,TheLagrangemethodoffindingasolution(x1*,.,xm*)totheproblem,consistsofderivingthefollowingfirst-orderconditionstofindthecriticalpoint(s)oftheLagrangefunction,whichare,Italsoworkswithmorevariablesandmoreconstraints.(Definition13.3),13,Second-OrderConditions,Withregularoptimizationinmoredimensions,weneededsomeconditionsontheHessian.,WenowneedthesameconditionsbutontheHessianoftheLagrangefunction.,ThisistheBorderedHessian.,14,Theorem13.3,AstationaryvalueoftheLagrangefunctionyieldsamaximumifthedeterminantoftheborderedHessianispositive,minimumifthedeterminantoftheborderedHessianisnegative.,15,Againbacktotheearlierexample,f(x1,x2)=x1x2andg(x1,x2)=102x13x2.,Evaluatein,Thus,wenowknowthatthisisalocalmaximum.,16,Withmorethantwodimensions.(Theorem13.4),IfaLagrangefunctionhasastationaryvalue,thenthatstationaryvalueisamaximumifthesuccessiveprincipalminorof|H*|alternateinsigninthefollowingway:,Itisamaximumifalltheprincipalminorsof|H*|arestrictlynegative.,Note:Boththeoremsonlygivesufficientconditions.,17,Theorem13.6,TheLagrangemethodworks(infindingalocalextremum)ifandonlyifitispossibletosolvethefirst-orderconditionsfortheLagrangemultipliers.,18,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,19,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,fiscontinuousifitdoesnotcontainanyholes,jumps,etc.Youcannotmaximizethefunctionf(x)=1/xontheinterval-1,1.Butyoucanmaximizethefunctionf(x)=1/xontheinterval1,2.,20,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,Xisnonemptyifitcontainsatleastoneelement.Otherwisetheproblemdoesnotmakesense.Ifthereisnovalue,thereisalsonomaximumvalue.,21,WeierstrasssTheorem:Iffisacontinuousfunction,andXisanonempty,closed,andboundedset,thenfhasbothaminimumandamaximumonX.,Butwhencanwebesurethataminimumandamaximumreallyexist!?,XisclosediftheendpointsoftheintervalarealsoincludedinX.0x1isanopenset.Itisnotaclosedset.0x1isaclosedset.Youcannotmaximizethefunctionf(x)=xontheinterval0x0.,23,Butwhencanwebesurethatalocalextremumisalsoaglobalone!?,Notalways.,g(x),fincreases,notaglobalmaximum,globalmaximum,24,Togiveaformalderivation,weneedsomemoremathematics.,ConvexsetConsidersomesetX.TakeanytwopointsinX.Drawalinebetweenthesepoints.IftheentirelineiswithinX,andthisistrueforanytwopointsintheset,thenthesetisconvex.,Convexset,Notaconvexset,25,Note,A“convexset”issomethingentirelydifferentthana“convexfunction”.Thereisnosuchthingisa“concaveset”.,26,Togiveaformalderivation,weneedsomemoremathematics.,Quasi-concavityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-concave.,x1,Thisfunctionisquasi-concave,butnotconcave!,27,Togiveaformalderivation,weneedsomemoremathematics.,x1,Thisfunctionisnotquasi-concave.,Quasi-concavityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-concave.,28,Togiveaformalderivation,weneedsomemoremathematics.,Quasi-convexityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-convex.,x1,Thisfunctionisquasi-convex,butnotconvex!,29,Quasi-convexityConsidersomefunctionf(x).Takesomepointx1.ConsiderthesetX0consistingofallpointsx0thathavef(x0)f(x1).Ifthissetisconvex,andthisistrueforallpossiblex1,thenthefunctionisquasi-convex.,x1,Thisfunctionisnotquasi-convex.,Togiveaformalderivation,weneedsomemoremathematics.,30,Importanttonote.,Afunctionthatisconcave,isalsoquasi-concave.Afunctionthatisconvex,isalsoquasi-convex.Inalmostallofthecasesweruninto,wellhaveconvexandconcavefunctions.Notealsothatautilityfunctionthatisstrictquasi-concaveifandonlyifityieldsindifferencecurvesthatarestrictlyconvex.,31,Theorem13.7,Inaconstrainedmaximizationproblem,Iffisquasiconcave,allgsarequasiconvex,thenanylocallyoptimalsolutiontotheproblemisalsogloballyoptimal.Thus,iftheseconditionsaresatisfied,solvingtheLagrangeyieldstheglobaloptimum!,32,Theorem13.8:Uniqueness,Inaconstrainedmaximizationproblem,wherefandallthegsareincreasing,theniffisstrictlyquasiconcaveandthegsareconvex,orfisquasiconcaveandthegsarestrictconvex,thenalocallyoptimalsolutionisuniqueandalsogloballyoptimal.Example:theconsumerproblem!Utilityfunctionisincreasingandstrictlyquasi-concave,Budgetconstraintisincreasingandconvex.ThetheoremsaysthatsolvingtheFOCsyieldsauniquean
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 病毒性肝炎(一)
- 找准定位才能让子弹飞才能找准方向
- 聚焦2025年智能制造装备研发资金申请的智能制造装备产业协同创新报告
- 政务服务培训课件
- 《公共场所卫生管理条例实施细则》试题及答案
- 学校岗前培训考试及答案解析
- 教育智能化发展路径研究-洞察及研究
- 企业文件分类管理及归档标准化模板
- 重庆中考英语5年(2021-2025)真题汇编教师版-阅读理解之记叙文
- 雷州话方言考试题及答案
- 2025年四川省资阳市中考真题化学试题(无答案)
- 2025年事业单位工勤技能-福建-福建行政岗位工四级(中级工)历年参考题库典型考点含答案解析
- 婚姻家庭继承法期末考试试题及答案
- 全国中学生物理竞赛大纲与初赛考纲解读
- 2025年校招:财务岗试题及答案
- 项目工程审计整改方案(3篇)
- 《法律职业伦理(第3版)》全套教学课件
- 急性肺栓塞诊断和治疗指南2025解读
- 2025年全民国防教育知识网络竞赛题库及答案(超强)
- 老龄社区智慧化转型研究-洞察及研究
- 2025年中国电信面试试题及答案
评论
0/150
提交评论