神经网络-配套ppt-Ch_第1页
神经网络-配套ppt-Ch_第2页
神经网络-配套ppt-Ch_第3页
神经网络-配套ppt-Ch_第4页
神经网络-配套ppt-Ch_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反向传播算法的变形,BP算法的缺点,算法的收敛速度很慢可能有多个局部极小点BP网络的隐层神经元个数的选取尚无理论上的指导,而是根据经验选取BP网络是一个前向网络,具有非线性映射能力,但较之非线性动力学系统,功能上有其局限性,BP算法的变形,启发式改进动量可变的学习速度标准的数值优化共轭梯度牛顿法(Levenberg-Marquardt),性能曲面例子,网络结构,指定的函数,参数值,多层非线性网络与单层线性网络在均方误差性能曲面上完全不同。后者的均方误差只有一个极小点,且具有常数曲率;前者的均方误差可能有多个局部极小点而且在参数空间不同区域曲率也是变化的。,性能曲面例子(续),w11,1,w21,1,w11,1,w21,1,w11,1和w21,1变化时的平方误差,性能曲面例子(续),w11,1,b11,b11,w11,1,w11,1andb11变化时的平方误差,性能曲面例子(续),b11,b21,b21,b11,b11和b12变化时的平方误差,性能曲面例子的提示,算法初始参数不要设置为(参数空间的原点趋向于鞍点)算法初始参数不要设置过大(在远离优化点的位置,性能曲面将变得十分平坦),收敛性例子,w11,1,w21,1,学习速度太大情形,w11,1,w21,1,提高收敛速度,改变学习速度在曲面平坦时增加学习速度,在斜速率增加时减少学习速度。平滑轨迹:当算法开始振荡时,平滑掉振荡以产生一个稳定的轨迹。,动量方法,滤波器,例子,动量反向传播算法,最速下降反传算法(SDBP),动量反传算法(MOBP),w11,1,w21,1,可变的学习速度(VLBP),如果误差平方(在整个训练集上)在权值更新后增加了百分数z(典型值为1%至5%),则取消权值更新,学习速度乘上一个因子(1r0),并且动量系数g置为0.如果误差平方在权值更新后减少,则接受权值更新,并且学习速度乘上一个因子h1.如果动量系数g先前被置为0,则恢复到先前的值.如果误差平方的增加少于z,则接受权值更新,但是学习速度和动量系数不变.,例子,w11,1,w21,1,平方误差,学习速度,启发式方法的缺点,要设置一些额外的参数算法的性能对这些参数的改变十分敏感参数的选择是与问题相关的对某些用最速下降反传算法能找到解的问题却不能收敛。算法越复杂这样问题越容易发生,共轭梯度,1.初始搜索方向为梯度的反方向(最速下降)。,2.迭代一次,学习速度的选取采用沿搜索方向最小化性能函数。,3.选择下一次的搜索方向:,其中,或,或,因为通常性能指数不是二次的,以下二个方面需要改进:1.需要一个一般的过程去确定函数在某个特定方向的极值;2.算法在共扼方向迭代过n次后,可能要重新设置搜索方向。,4.如果算法不收敛,继续第步。,区间定位,区间缩小,黄金分割搜索,t=0.618Setc1=a1+(1-t)(b1-a1),Fc=F(c1)d1=b1-(1-t)(b1-a1),Fd=F(d1)Fork=1,2,.repeatIfFcFdthenSetak+1=ak;bk+1=dk;dk+1=ckck+1=ak+1+(1-t)(bk+1-ak+1)Fd=Fc;Fc=F(ck+1)elseSetak+1=ck;bk+1=bk;ck+1=dkdk+1=bk+1-(1-t)(bk+1-ak+1)Fc=Fd;Fd=F(dk+1)endenduntilbk+1-ak+1tol,共扼梯度反向传播法(CGBP),w11,1,w21,1,w11,1,w21,1,中间步骤,完整轨迹,Newton方法,如果性能指数是函数平方的和:,则梯度的第j个元素是:,矩阵形式,梯度能写成矩阵形式:,其中J是Jacobian矩阵:,Hessian矩阵,Gauss-Newton方法,设S(x)很小,Hessian矩阵近似表示为:,Newton方法成为:,Levenberg-Marquardt(LM)算法,Gauss-Newton方法近似表示Hessian矩阵如下:,这个矩阵可能奇异,但是可进行如下转换:,如果H的特征值和特征向量是:,那么,G的特征值,对所有i,增加以保证,可使G成为正定,所以矩阵G可逆。由此可导出如下LM算法:,mk的调整,当mk0,LM方法变成Gauss-Newton方法:,当mk,LM方法变成有小的学习速度的最速下降算法:,所以,开始时取小的mk值用Gauss-Newton法加速收敛。如果某一步不能获得较小的F(x)值,那么增加mk值(乘以一个因子)重复那一步直到F(x)值的减少。F(x)值最终一定会减少,因为我们将在最速下降方向上用很小的步长。,应用到多层网络,多层网络的性能指数是:,误差向量是:,参数向量是:,两个向量的维数是:,Jacobian矩阵,计算Jacobian矩阵,标准BP算法计算公式为:,对于Jacobian矩阵的元素可用下式计算:,使用链规则:,其中敏感度:,是用反向传播方法计算得到。,Marquardt敏感度,如果定义Marquardt敏感度为:,Jacobian矩阵能如下算得:,权,偏置,敏感度计算,反向传播,初始化,LMBP算法,1.将所有输入提交网络并计算相应的网络输出和误差。计算所有输入的误差平方和F(x).2.计算Jacobian矩阵。初始化敏感度,用反向传播算法递归计算各层的敏感度。将各个单独的矩阵增广到Marquardt敏感度中。计算Jacobian矩阵的元素。3.求得权的改变量。4.用重复计算误差平方的和。如果新的和小于第1步中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论