高一数学方程的根与函数的零点课件新课标人教A_第1页
高一数学方程的根与函数的零点课件新课标人教A_第2页
高一数学方程的根与函数的零点课件新课标人教A_第3页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

临沭一中,方程的根与函数的零点,在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.我国古代数学家已比较系统地解决了部分方程的求解的问题。如约公元50年100年编成的九章算术,就给出了求一次方程、二次方程和三次方程根的具体方法,问题探究,方程,x22x+1=0,x22x+3=0,y=x22x3,y=x22x+1,函数,函数的图象,方程的实数根,x1=1,x2=3,x1=x2=1,无实数根,函数的图象与x轴的交点,(1,0)、(3,0),(1,0),无交点,x22x3=0,y=x22x+3,问题探究,问题2求出表中一元二次方程的实数根,画出相应的二次函数图像的简图,并写出函数的图象与x轴的交点坐标,方程ax2+bx+c=0(a0)的根,函数y=ax2+bx+c(a0)的图象,判别式=b24ac,0,=0,0,函数的图象与x轴的交点,有两个相等的实数根x1=x2,没有实数根,(x1,0),(x2,0),(x1,0),没有交点,两个不相等的实数根x1、x2,问题3若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?,对于函数y=f(x),叫做函数y=f(x)的零点。,方程f(x)=0有实数根,函数的零点定义:,等价关系,使f(x)=0的实数x,零点的求法,代数法,图像法,例1:求函数f(x)=lg(x-1)的零点,求函数零点的步骤:(1)令f(x)=0;(2)解方程f(x)=0;(3)写出零点,问题探究,观察函数的图象在区间(a,b)上_(有/无)零点;f(a).f(b)_0(或)在区间(b,c)上_(有/无)零点;f(b).f(c)_0(或)在区间(c,d)上_(有/无)零点;f(c).f(d)_0(或),结论,思考:若函数y=f(x)在区间(a,b)内有零点,一定能得出f(a)f(b)0的结论吗?,如果函数y=f(x)在a,b上,图象是连续的,并且在闭区间的两个端点上的函数值互异即f(a)f(b)0,且是单调函数那么,这个函数在(a,b)内必有惟一的一个零点。,由表3-1和图3.13可知,f(2)0,,即f(2)f(3)0,,说明这个函数在区间(2,3)内有零点。,由于函数f(x)在定义域(0,+)内是增函数,所以它仅有一个零点。,解:用计算器或计算机作出x、f(x)的对应值表(表3-1)和图象(图3.13),4,1.3069,1.0986,3.3863,5.6094,7.7918,9.9459,12.0794,14.1972,例题2求函数f(x)=lnx+2x6的零点个数。,你能判断出方程x=-x2+3实数根的个数吗?,试一试:,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论