


已阅读5页,还剩63页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,解排列组合问题的常用策略,排列组合应用题解法综述,计数问题中排列组合问题是最常见的,由于其解法往往是构造性的,因此方法灵活多样,不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。,基本原理,组合,排列,排列数公式,组合数公式,组合数性质,应用问题,知识结构网络图:,两个原理的区别与联系:,做一件事或完成一项工作的方法数,直接(分类)完成,间接(分步骤)完成,做一件事,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法,第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+mn种不同的方法,做一件事,完成它可以有n个步骤,做第一步中有m1种不同的方法,做第二步中有m2种不同的方法,做第n步中有mn种不同的方法,那么完成这件事共有N=m1m2m3mn种不同的方法.,分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件,分类计数原理分步计数原理区别,分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。,1.排列和组合的区别和联系:,从n个不同元素中取出m个元素,按一定的顺序排成一列,从n个不同元素中取出m个元素,把它并成一组,所有排列的的个数,所有组合的个数,2.解决排列组合综合性问题的一般过程如下:,1.认真审题弄清要做什么事,2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。,3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.,解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略,判断下列问题是组合问题还是排列问题?,(1)设集合A=a,b,c,d,e,则集合A的含有3个元素的子集有多少个?,(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?,有多少种不同的火车票价?,组合问题,排列问题,(3)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?,组合问题,(4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?,组合问题,(5)从4个风景点中选出2个安排游览,有多少种不同的方法?,组合问题,(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?,排列问题,组合问题,3.合理分类和准确分步,解排列(或)组合问题,应按元素的性质进行分类,分类标准明确,不重不漏;按事情的发生的连续过程分步,做到分步层次清楚.,分析:先安排甲,按照要求对其进行分类,分两类:,根据分步及分类计数原理,不同的站法共有,例:6个同学和2个老师排成一排照相,2个老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?,1)若甲在排尾上,则剩下的5人可自由安排,有种方法.,2)若甲在第2、3、6、7位,则排尾的排法有种,1位的排法有种,第2、3、6、7位的排法有种,根据分步计数原理,不同的站法有种。,3)再安排老师,有2种方法。,(1)0,1,2,3,4,5可组成多少个无重复数字且能被五整除的五位数?,练习题,分类:个位数字为5或0:,个位数为0:,个位数为5:,(2)0,1,2,3,4,5可组成多少个无重复数字且大于31250的五位数?,分类:,引申1:31250是由0,1,2,3,4,5组成的无重复数字的五位数中从小到大第几个数?,方法一:(排除法),方法二:(直接法),引申2:由0,1,2,3,4,5组成的无重复数字的五位数中大于31250,小于50124的数共有多少个?,(3)有不同的数学书7本,语文书5本,英语书4本,由其中取出不是同一学科的书2本,共有多少种不同的取法?,(75+74+54=83),回目录,解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。,基本方法(一)特殊元素和特殊位置问题,特殊元素和特殊位置优先策略,例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.,解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件,例2用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有()A.24B.30C.40D.60,分析:由于该三位数是偶数,所以末尾数字必须是偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应优先安排。按0排在末尾和不排在末尾分为两类;,0排在末尾时,有个;0不排在末尾时,先用偶数排个位,再排百位,最后排十位有个;由分类计数原理,共有偶数30个.,B,小结:1、“在”与“不在”可以相互转化。解决某些元素在某些位置上用“定位法”,解决某些元素不在某些位置上一般用“间接法”或转化为“在”的问题求解。,2、排列组合应用题极易出现“重”、“漏”现象,而重”、“漏”错误常发生在该不该分类、有无次序的问题上。为了更好地防“重”堵“漏”,在做题时需认真分析自己做题思路,也可改变解题角度,利用一题多解核对答案,基本方法(二)相邻相间问题,1.相邻元素捆绑策略,例:7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.,解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.,2.不相邻问题插空策略,例:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?,解:分两步进行第一步排2个相声和3个独唱共有种,,元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端,(1)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?,(2)三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?,捆绑法:,插空法:,(3)(2005辽宁)用、组成没有重复数字的八位数,要求与相邻,与相邻,与相邻,而与不相邻,这样的八位数共有_个(用数字作答),练习,(3)(2005辽宁)用、组成没有重复数字的八位数,要求与相邻,与相邻,与相邻,而与不相邻,这样的八位数共有_个(用数字作答),将与,与,与捆绑在一起排成一列有种,再将、插入4个空位中的两个有种,故有种,(4)七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有()种960种(B)840种(C)720种(D)600种,解:,另解:,(5)某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为(),20,小结:以元素相邻为附加条件的应把相邻元素视为一个整体,即采用“捆绑法”;以某些元素不能相邻为附加条件的,可采用“插空法”。“插空”有同时“插空”和有逐一“插空”,并要注意条件的限定.,回目录,定序问题倍缩、空位、插入策略,基本方法(三)定序问题,定序问题倍缩、空位、插入策略,例:7人排队,其中甲乙丙3人顺序一定共有多少不同的排法,解:,(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:,(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有种坐法,则共有种方法,1,思考:可以先让甲乙丙就坐吗?,(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法,4*5*6*7,定序问题可以用倍缩法,还可转化为占位插空模型处理,练习题,10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?,练习:期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?,结论对等法:在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一.在求解中只要求出全体,就可以得到所求.,基本方法(四)分房问题,又名:住店法,重排问题求幂策略,例:七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有(),A.B.CD.,分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得种。,注:对此类问题,常有疑惑,为什么不是呢?,用分步计数原理看,5是步骤数,自然是指数。,回目录,某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法(),练习题,回目录,基本方法(五)环排问题和多排问题,环排问题线排策略,例1.5人围桌而坐,共有多少种坐法?,解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人A并从此位置把圆形展成直线其余4人共有_种排法即,(5-1)!,一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有,练习题,6颗颜色不同的钻石,可穿成几种钻石圈?,60,多排问题直排策略,例2.8人排成前后两排,每排4人,其中甲乙在前排,丁在后排,共有多少排法,解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.,一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.,回目录,有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是_,346,练习题,基本方法(六)小集团问题,小集团问题先整体局部策略,例:计划展出10幅不同的画,其中1幅水彩画,幅油画,幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为_,练习:5男生和女生站成一排照像,男生相邻,女生也相邻的排法有_种,基本方法(七)元素相同问题隔板策略,1.应用背景:相同元素的名额分配问题。,2.隔板法的使用特征:相同的元素分成若干部分,每部分至少一个。,元素相同问题隔板策略,例.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?,解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有_种分法。,将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为,例高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?,解此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的隔板,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种.,结论转化法:对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.,分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.,练习,(1)将10个学生干部的培训指标分配给7个不同的班级,每班至少分到一个名额,不同的分配方案共有()种。,(2)10个相同的球装5个盒中,每盒至少一个,共有()种装法。,小结:把n个相同元素分成m份每份,至少1个元素,问有多少种不同分法的问题可以采用“隔板法”得出共有种.,基本方法(八)平均分组问题除法策略,“分书问题”,平均分组问题除法策略,例:6本不同的书平均分成3堆,每堆2本共有多少分法?,解:分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有种取法,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法。,平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(n为均分的组数)避免重复计数。,1将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?,2.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为_,基本方法(九)间接法解题,正难则反总体淘汰策略,例1.我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?,解43人中任抽5人的方法有种,正副班长,团支部书记都不在内的抽法有种,所以正副班长,团支部书记至少有1人在内的抽法有种.,分析此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.,有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.,例2:将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有()(A)120种(B)96种(C)78种(D)72种,解:,五人从左到右站成一排,其中甲不站排头,乙不站第二个位置,那么不同的站法有()A.120B.96C.78D.72,直接,练习,分清排列、组合、等分的算法区别,例(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?(2)今有10件不同奖品,从中选6件分给三人,其中1人一件1人二件1人三件,有多少种分法?(3)今有10件不同奖品,从中选6件分成三份,每份2件,有多少种分法?,解:(1),(2),(3),十、构造模型策略,例.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?,解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有_种,一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决,练习题,某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?,120,基本方法(十一)先选后排问题,排列组合混合问题先选后排策略,例.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.,解:第一步从5个球中选出2个组成复合元共有_种方法.再把5个元素(包含一个复合元素)装入4个不同的盒内有_种方法.,根据分步计数原理装球的方法共有_,解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?,练习题,一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有_种,192,3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?,先选后排问题的处理方法,解法一:先组队后分校(先分堆后分配),解法二:依次确定到第一、第二、第三所学校去的医生和护士.,练习某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法_种.,解:采用先组后排方法:,小结:本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。,基本方法(十二)实验法(穷举法),(枚举法),实验法(穷举法),题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。,例将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个方格填1个,则每个方格的标号与所填的数字均不相同的填法种数有(),A.6B.9C.11D.23,分析:此题考查排列的定义,由于附加条件较多,解法较为困难,可用实验法逐步解决。,第一方格内可填2或3或4。如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省天水天光半导体有限责任公司招聘18人考前自测高频考点模拟试题及答案详解参考
- 2025南平市延平区疾病预防控制中心招聘驾驶员模拟试卷及答案详解参考
- 2025广东省第二中医院招聘内分泌科医师1人考前自测高频考点模拟试题及参考答案详解一套
- 2025广东湛江市麻章区委组织部雇用后勤服务人员1人考前自测高频考点模拟试题有完整答案详解
- 2025贵州安顺市黄果树旅游区教育事务管理服务中心招聘公益性岗位人员1人考前自测高频考点模拟试题及一套参考答案详解
- 2025广西百色市平果市道路运输发展中心城镇公益性岗位人员招聘1人考前自测高频考点模拟试题有答案详解
- 2025哈药集团春季校园招聘考前自测高频考点模拟试题及完整答案详解一套
- 2025北京市环科院编制外人员招聘6人模拟试卷及答案详解(历年真题)
- 2025贵州铜仁职业技术学院引进高层次及紧缺专业人才57人考前自测高频考点模拟试题及1套完整答案详解
- 2025昆明市禄劝县教育体育局所属事业单位面向县内学校选调人员(4人)模拟试卷及答案详解(名校卷)
- 法国文学课件
- 2025年学历提升-成人高考-专升本-成人高考专升本(法学类)历年参考题库含答案解析(5套)
- 2025年止血技术理论知识考试试题及答案
- 密炼机炼胶作业安全操作指导书
- 胰腺假性囊肿治疗指南
- 2025年(完整版)(高级)政工师理论考试题库与答案
- 江西三校单招试题及答案
- 首钢职务职级管理办法
- 2025国家保安员资格考试题库及答案
- 2025年黑龙江省齐齐哈尔市中考英语试卷
- 医药代表商务礼仪培训课程
评论
0/150
提交评论