一年级思维训练一笔画_第1页
一年级思维训练一笔画_第2页
一年级思维训练一笔画_第3页
一年级思维训练一笔画_第4页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一笔画,小朋友们,在纸上描一下,你们能把下面的图形一笔画出来吗?,如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。,例【1】下面这些图形,哪个能一笔画?哪个不能一笔画?,仔细观察一下这些图形有什么特点?,能,能,不能,不能,通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同。由一点发出有偶数条线,那么这个点叫做偶点。相应的,由一点出发有奇数条数,则这个点叫做奇点。,(1),(2),(3),(4),再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。而图(2)有4个奇点,2个偶点,不能一笔画成。,这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。,(1),(2),(3),(4),(1)(2)(3),例【2】下面各图能否一笔画成?,分析图(1)从任意一点出都可以一笔画成,它的每一个点都是与两条线相连的偶点。图(2),经过反复试验,也可找到画法。图中B、D为偶点,A、C为奇点,即图中有两个奇点,两个偶点。要想一笔画,需从奇点出发,回到奇点。经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点。,这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系,它们之间到底有着什么样的关系呢?,如果图形只有偶点,可以以任意一点为起点,一笔画出。如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。如果图形的奇点个数超过两个,则图形不能一笔画出。,例【3】下面的图形,哪些能一笔画出?哪些不能一笔画出?,例【4】下图中,图(1)至少要画几笔才能画成?,分析图(1)有4个奇点,所以不能一笔画出。如果把它分成几个部分,而每个部分是一笔画图形,则我们就可以用最少的几笔画出这个图形。按照这样的要求,每个部分最多含有两个奇点,可以采用再两个奇点之间去掉一条线的方法,该奇点就变成偶点。经观察,图(1)可以切分成图(A)、(B)两个图形。这两部分都可以一笔画出,所以图(1)至少用两笔画出。,小结,1、只有偶点,可以一笔画,并且可以以任意一点作为起点。2、只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点。3、奇点超过两个,则不能一笔画。对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答。,能否一笔画成,关键在于判别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论