



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学排列与组合知识点排列组合是高中数学教学内容的一个重要组成部分,但由于排列组合极具抽象性,使之成为高中数学课本中 教 与 学 的难点.加之高中学生的认知水平和思维能力在一定程度上受到限制,所以在解题中经常出现错误.以下本人搜集整合了高中数学排列与组合相关知识点,希望可以帮助大家更好的学习这些知识。 高中数学排列与组合知识点汇编如下: 一、排列 1 定义 (1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。 (2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn. 2 排列数的公式与性质 (1)排列数的公式: Amn=n(n-1)(n-2)(n-m+1) 特例:当m=n时, Amn=n!=n(n-1)(n-2)321 规定:0!=1 二、组合 1 定义 (1)从n个不同元素中取出 m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合 (2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 Cmn表示。 2 比较与鉴别 由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。 排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 三、排列组合与二项式定理知识点 1.计数原理知识点 乘法原理:N=n1n2n3nM (分步) 加法原理:N=n1+n2+n3+nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 kk!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: 分类讨论思想;转化思想;对称思想. 4.二项式定理知识点: (a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+ Cnran-rbr+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn 主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+Cnr+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+=Cn1+Cn3+Cn5+ Cn7+ Cn9+=2n -1 通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025项目投资合同范本
- 2025安置房买卖合同
- 2025电力工程监理合同标准版样本
- 2025家居市场家具买卖合同
- 2025合同违约强制执行申请书
- 2025年高分子材料供需合同范本
- 安徽九省联考试卷化学及答案
- 铝业模拟考试试卷及答案
- 火机安全知识培训内容课件
- 福建安规考试题库及答案
- 收银技能理论考试题及答案
- 1.1 常见的植物(教学课件)科学青岛版二年级上册(新教材)
- 2025污水处理综合考试题及答案
- 2025年学习二十届全会精神知识竞赛题库及答案
- 2025福建漳州闽投华阳发电有限公司招聘52人备考试题及答案解析
- 初一启新程扬帆再出发-2025-2026学年上学期七年级(初一)开学第一课主题班会课件
- 寿险调查培训课件下载
- 中国法制史试题题库(附答案)
- Z20名校联盟(浙江省名校新高考研究联盟)2026届高三第一次联考 语文试卷(含答案详解)
- 2025诗词大会题库(含答案)
- 2025年农机驾驶证考试题及答案
评论
0/150
提交评论