




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1设函数,求,。【解】由题设得,于是得 ,。2计算下列各导数:;【解】。;【解】。;【解】。【解】。3设函数由方程所确定,求。【解法一】方程中完成积分即为 ,亦即为 ,得知,解出,得,于是得。【解法二】在方程两边对求导,注意到,得即得 ,亦即,解出,得,方程中完成积分即为 ,亦即为 ,得知,再将代入中,得。4设,求。【解】问题是由参数方程求导【解法一】。【解法二】。5求下列极限:;【解】这是“”未定型极限,应用洛必达法则,得。;【解】这是“”未定型极限,应用洛必达法则,得 - 应用洛必达法则 - 再次应用洛必达法则。;【解】这是“”未定型极限,应用洛必达法则,得 - 应用洛必达法则 - 完成求导 - 整理。【解】这是“”未定型极限,应用洛必达法则,得 - 应用洛必达法则 - 完成求导 - 分子分母同消去 - 再次应用洛必达法则 - 分子分母同消去。6当为何值时,函数有极值。【解】由给定的函数可见,其定义域为,由于,可得有唯一驻点,无不可导点,显见,当时,当时,可知,函数在点处取得极小值。7计算下列定积分:;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。,其中。【解】。8设,求在上的表达式,并讨论在内的连续性。【解】当时,;当时,;当时,;当时,当时,于是,由于初等函数在内连续,初等函数在内连续,故要讨论在内的连续性,仅须讨论在处的连续性,由于,且,可知在处连续,从而,在内连续。9设,求在内的表达式。【解】当时,当时,当时,于是得。10设,求。【解】对等号两端在区间上积分,注意为常数,得即有 ,移项,整理即得 。11已知,求。【解】问题在于求出和,可应用上题的方法,对等号两端在区间上积分,注意和均为常数,得 即有 ,移项、整理得 ,将其代入题目已知式,得,再对上式的等号两端在区间上积分,得即有 移项、整理得 ,最后得 。12设(),求。【解】由题设,得,且于是又得 ,从而有 ,这时有 ,代入,得 ,即,得到 。13设连续,若满足,求。【解】设,则,于是,再由题设,得,即得,两边求导得 ,即有 ,从而 ,?14设函数在区间上连续,在内可导且,证明:在内有。【证明】任取,则由题设有,函数在区间上连续,在内可导且,那么对于函数,有,令,则由已知在内可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中考历史中国近代史基础知识测试题(选择专项)
- 《神经内科疾病诊疗》课件
- 品质部培训资料
- 订民宿房间合同协议
- 郴电国际供用电合同协议
- 网络安全设备销售与安装服务合同
- 支付定金手房地产转让合同
- 人才招聘居间服务合同
- 房地产销售协议合同
- 服装公司协议书
- 四下劳动实践试题及答案
- 医疗机构经营情况说明范文
- 动物交换合同范本
- 月子中心产康部产后恢复流程解析
- GB/T 24628-2025医疗保健产品灭菌生物与化学指示物测试设备
- 热电材料与器件-深度研究
- 辐照下金属材料微观损伤行为的分子动力学模拟研究
- 2024-2025学年统编版道德与法治八年级下册第四单元检测卷(含答案)
- 影视行业国际化发展的标准化研究-洞察分析
- 建筑装饰工程材料供应合同及质量免责协议
- 2025新人教版英语七年级下不规则动词表
评论
0/150
提交评论