




已阅读5页,还剩42页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,第一章矢量分析,2,本章重点介绍与矢量场分析有关的数学基础内容。矢量代数常用正交坐标系标量场的梯度矢量场的散度矢量场的旋度拉普拉斯运算亥姆霍兹定理,本章内容,3,矢量的几何表示:用一条有方向的线段来表示,矢量可表示为:其中为模值,表征矢量的大小;为单位矢量,表征矢量的方向;,说明:矢量书写时,印刷体为场量符号加粗,如。教材上的矢量符号即采用印刷体。,1.1矢量代数,1.1.1标量和矢量,标量与矢量标量:只有大小,没有方向的物理量(电压U、电荷量Q、能量W等)矢量:既有大小,又有方向的物理量(作用力,电、磁场强度),矢量的代数表示,4,矢量用坐标分量表示,5,1.1.2矢量的运算,矢量的加法和减法,说明:1、矢量的加法符合交换律和结合律:,2、矢量相加和相减可用平行四边形法则求解:,6,矢量的乘法,矢量与标量相乘,标量与矢量相乘只改变矢量大小,不改变方向。,矢量的标积(点积),说明:1、矢量的点积符合交换律和分配律:,2、两个矢量的点积为标量,7,矢量的矢积(叉积),说明:1、矢量的叉积不符合交换律,但符合分配律:,2、两个矢量的叉积为矢量,3、矢量运算恒等式,8,三维空间任意一点的位置可通过三条相互正交线的交点来确定。,在电磁场与波理论中,三种常用的正交坐标系为:直角坐标系、圆柱坐标系和球坐标系。,三条正交线组成的确定三维空间任意点位置的体系,称为正交坐标系;三条正交线称为坐标轴;描述坐标轴的量称为坐标变量。,1.2三种常用的正交坐标系,9,1.2.1直角坐标系,位置矢量,面元矢量,线元矢量,体积元,坐标变量,坐标单位矢量,10,1.2.2圆柱坐标系,坐标变量,坐标单位矢量,位置矢量,线元矢量,体积元,面元矢量,圆柱坐标系中的线元、面元和体积元,圆柱坐标系,11,说明:,圆柱坐标系下矢量运算方法:,加减:,标积:,矢积:,12,1.2.3球面坐标系,球坐标系,球坐标系中的线元、面元和体积元,坐标变量,坐标单位矢量,位置矢量,线元矢量,体积元,面元矢量,13,说明:球面坐标系下矢量运算:,加减:,标积:,矢积:,14,1.2.4坐标单位矢量之间的关系,直角坐标与圆柱坐标系,圆柱坐标与球坐标系,直角坐标与球坐标系,15,三种坐标系有不同适用范围:,1、直角坐标系适用于场呈面对称分布的问题求解,如无限大面电荷分布产生电场分布。,2、柱面坐标系适用于场呈轴对称分布的问题求解,如无限长线电流产生磁场分布。,3、球面坐标系适用于场呈点对称分布的问题求解,如点电荷产生电场分布。,16,1.3标量场的梯度,如果物理量是标量,称该场为标量场。例如:温度场、电位场、高度场等。如果物理量是矢量,称该场为矢量场。例如:流速场、重力场、电场、磁场等。如果场与时间无关,称为静态场,反之为时变场。,时变标量场和矢量场可分别表示为:,确定空间区域上的每一点都有确定物理量与之对应,称在该区域上定义了一个场。,从数学上看,场是定义在空间区域上的函数:,标量场和矢量场,静态标量场和矢量场可分别表示为:,17,1.3.1标量场的等值面,标量场空间中,由所有场值相等的点所构成的面,即为等值面。即若标量函数为,则等值面方程为:,1.3.2方向导数,方向导数表征标量场空间中,某点处场值沿特定方向变化的规律。,方向导数定义:,方向导数与选取的考察方向有关。,18,方向导数物理意义:,,标量场在处沿方向增加率;,,标量场在处沿方向减小率;,,标量场在处沿方向为等值面方向(无改变),方向导数的计算,的方向余弦。,式中:,分别为与x,y,z坐标轴的夹角。,19,梯度的定义,式中:为场量最大变化率的方向上的单位矢量。,梯度的性质,标量场的梯度为矢量,且是坐标位置的函数,标量场梯度的幅度表示标量场的最大增加率标量场梯度的方向垂直于等值面,为标量场增加最快的方向标量场在给定点沿任意方向的方向导数等于梯度在该方向投影,1.3.3标量场的梯度,20,梯度的运算,直角坐标系:,球面坐标系:,柱面坐标系:,21,梯度运算相关公式,式中:为常数;,为坐标变量函数;,22,1.4矢量场的通量与散度,1.4.1矢量线(力线),矢量场的通量,矢量线的疏密表征矢量场的大小矢量线上每点的切向代表该处矢量场的方向,若矢量场分布于空间中,在空间中存在任意曲面S,则定义:,为矢量沿有向曲面S的通量。,1.4.2矢量场的通量,问题:如何定量描述矢量场的大小?,引入通量的概念。,23,1)面元矢量定义:面积很小的有向曲面。,:面元面积,为微分量,无限小,:面元法线方向,垂直于面元平面。,说明:,2)面元法向的确定方法:对非闭合曲面:由曲面边线绕向按右手螺旋法则确定;对闭合曲面:闭合面外法线方向,若S为闭合曲面,物理意义:表示穿入和穿出闭合面S的通量的代数和。,24,若,通过闭合曲面有净的矢量线穿出,闭合面内有发出矢量线的正源;,若,有净的矢量线进入,闭合面内有汇集矢量线的负源;,若,进入与穿出闭合曲面的矢量线相等,闭合面内无源,或正源负源代数和为0。,通过闭合面S的通量的物理意义:,25,1.4.3、矢量场的散度,散度的定义,在场空间中任意点M处作一个闭合曲面,所围的体积为,则定义场矢量在M点处的散度为:,即流出单位体积元封闭面的通量。,26,散度的物理意义,矢量场的散度表征了矢量场的通量源的分布特性(体密度);,矢量场的散度是标量;,矢量场的散度是空间坐标的函数;,矢量场的散度值表征空间中某点处通量源的密度。,(正源),负源),(无源),若处处成立,则该矢量场称为无散场,若,则该矢量场称为有散场,为源密度,讨论:在矢量场中,,27,在直角坐标系下:,在圆柱坐标系下:,在球面坐标系下:,散度的计算,28,1.4.4散度定理(矢量场的高斯定理),该公式表明了矢量场的散度在体积V内的积分等于矢量场穿过包围该体积的边界面S的通量。,散度运算相关公式,29,1.5矢量场的环流旋度,磁场的环流:,30,1.5.1矢量的环流,在场矢量空间中,取一有向闭合路径,则称沿积分的结果称为矢量沿的环流。即:,线元矢量:长度趋近于0,方向沿路径切线方向。,环流意义:若矢量场环流不为零,则矢量场中存在产生矢量场的漩涡源。,讨论:,31,1.5.2矢量的旋度,环流面密度,称为矢量场在M点处沿方向的漩涡源密度。,定义:空间某点M处单位面元边界闭合曲线的环流:,1)环流面密度大小与所选取的单位面元方向有关。,2)任意取向面元的环流面密度与最大环流面密度的关系:,32,矢量场的旋度,矢量场在M点的旋度为该点处环流面密度最大时对应的矢量,模值等于M点处最大环流面密度,方向为环流密度最大的方向,表示为,即:,式中:表示矢量场旋度的方向;,旋度的物理意义,矢量的旋度为矢量,是空间坐标的函数,矢量在空间某点处的旋度表征矢量场在该点处的漩涡源密度,33,旋度的计算,直角坐标系:,34,柱面坐标系:,球面坐标系:,旋度计算相关公式:,证明,证明,35,讨论:散度和旋度比较,36,1.5.3斯托克斯定理,由旋度的定义,对于有限大面积s,可将其按如图方式进行分割,对每一小面积元有,斯托克斯定理的证明:,得证!,意义:矢量场的旋度在曲面上的积分等于该矢量场在限定该曲面的闭合曲线上的环流。,曲面的剖分,方向相反大小相等抵消,37,若矢量场在某区域V内,处处,但在某些位置或整个空间内,有,则称在该区域V内,场为无旋场。,1.6无旋场与无散场,1.6.1无旋场,结论:无旋场场矢量沿任何闭合路径的环流等于零(无漩涡源)。,重要性质:,无旋场的旋度始终为0,可引入标量辅助函数表征矢量场,即,例如:静电场,38,1.6.2无散场,若矢量场在某区域V内,处处,但在某些位置或整个空间内,有,则称在该区域V内,场为无源有旋场。,结论:无散场通过任意闭合曲面的通量等于零(无散度源)。,重要性质:,无散场的散度始终为0,可引入矢量函数的旋度表示无散场,例如,恒定磁场,39,(3)无旋、无散场,(源在所讨论的区域之外),(4)有散、有旋场,这样的场可分解为两部分:无旋场部分和无散场部分,40,1.7拉普拉斯运算,标量场的拉普拉斯运算,在直角坐标系中:,在圆柱坐标系中:,在球面坐标系中:(1.7.3),41,矢量场的拉普拉斯运算,在直角坐标系中:,42,1.8亥姆霍兹定理,亥姆霍兹定理,在有限区域内,任意矢量场由矢量场的散度、旋度和边界条件(即矢量场在有限区域边界上的分布)唯一确定,且任意矢量场可表示为:,说明:,矢量场可分解一个有源无旋场和无源有旋场之和,即:,43,亥姆霍兹定理在电磁理论中的意义:研究电磁场的一条主线。,若矢量场在某区域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地铁工程宣传方案(3篇)
- 安全教育课件培训学时
- 学习任务群在高中语文课堂中的应用
- 农业无人机租赁服务平台在2025年的市场定位与品牌建设策略
- 猎人笔记课件
- 地下管廊工程方案(3篇)
- 犬咬伤的护理
- 安全教育培训馆课件
- 矿业会计面试题及答案
- 口腔考编面试题库及答案
- 变压器试验收费标准
- 竣 工 验 收 证 书(施管表2)
- 2023学年完整公开课版法兰克王国
- 整理黑龙江基准地价与标定地价早
- CPK工具表的模板
- 中国画发展史
- 客户基本信息调查表实用文档
- 19-雾在哪里ppt市公开课金奖市赛课一等奖课件
- 城镇道路工程施工与质量验收规范
- GB/T 11270.2-2002超硬磨料制品金刚石圆锯片第2部分:烧结锯片
- 金融统计分析教材课件
评论
0/150
提交评论