《可测函数的收敛性》PPT课件_第1页
《可测函数的收敛性》PPT课件_第2页
《可测函数的收敛性》PPT课件_第3页
《可测函数的收敛性》PPT课件_第4页
《可测函数的收敛性》PPT课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节可测函数的收敛性,第四章可测函数,函数列的几种收敛定义,一致收敛:,注:近似地说一致收敛是函数列收敛慢的程度能有个控制近似地说一致连续是函数图象陡的程度能有个控制,点点收敛:记作,例:函数列fn(x)=xn,n=1,2,在(0,1)上处处收敛到f(x)=0,但不一致收敛,但去掉一小测度集合(1-,1),在留下的集合上一致收敛,fn(x)=xn,几乎处处收敛:记作(almosteverywhere),即:去掉某个零测度集,在留下的集合上处处收敛,即:去掉某个小(任意小)测度集,在留下的集合上一致收敛,几乎一致收敛:记作(almostuniformly),依测度收敛:记作,注:从定义可看出,几乎处处收敛强调的是在点上函数值的收敛(除一零测度集外)依测度收敛并不指出函数列在哪个点上的收敛,其要点在于误差超过的点所成的集的测度应随n趋于无穷而趋于零,而不论点集的位置状态如何,不依测度收敛,依测度收敛,几种收敛的区别,说明:当n越大,取1的点越多,故fn(x)在R+上处处收敛于1,(1)处处收敛但不依测度收敛,在R+上处处收敛于f(x)=1,所以fn(x)在R+上不依测度收敛于1,另外fn不几乎一致收敛于1,fn不几乎一致收敛于f,几乎一致收敛:记作(almostuniformly),即:去掉某个小(任意小)测度集,在留下的集合上一致收敛,即:去掉测度集,在留下的集合上仍不一致收敛,任意(),适当小,小,fn不几乎一致收敛于f,即:去掉任意小(适当小)测度集,在留下的集合上仍不一致收敛,(2)依测度收敛但处处不收敛,依测度收敛但处处不收敛,取E=(0,1,n=2k+i,0i2k,k=0,1,2,3,说明:对任何x(0,1,fn(x)有两个子列,一个恒为1,一个恒为0,所以fn(x)在(0,1上处处不收敛;,例:函数列fn(x)=xn在(0,1)上处处收敛到f(x)=0,但不一致收敛,但去掉一小测度集合(1-,1),在留下的集合上一致收敛,收敛的联系(叶果洛夫定理的引入),三种收敛的联系,即:去掉某个小(任意小)测度集,在留下的集合上一致收敛,几乎处处收敛与几乎一致收敛(叶果洛夫定理)设mE+,fn,f在E上几乎处处有限且可测,,(即:可测函数列的收敛“基本上”是一致收敛),引理:设mE+,fn,f在E上几乎处处有限且可测,,证明:由于为零测度集,故不妨令fn,f在E上处处有限,从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论