


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.2012年高考训练题(03)抽象函数问题201110.191.设奇函数在上为增函数,且,则不等式的解集为( D )A B CD2.设定义在上的函数满足,若,则( C )A B. C. D.3.定义在上的函数满足(),则等于( C )A2 B3 C6 D94.(辽宁卷12)设是连续的偶函数,且当x0时是单调函数,则满足的所有x之和为( C )A B C D5定义在R上的函数既是奇函数,又是周期函数,是它的一个正周期.若将方程在闭区间上的根的个数记为,则可能为 D. A.0B.1C.3D.5 6. 已知定义域为R的函数f(x)在上为减函数,且函数y=f(x+8)函数为偶函数,则( )A.f(6)f(7) B.f(6)f(9) C.f(7)f(9) D.f(7)f(10) 答案:D解析:y=f(x+8)为偶函数,即关于直线对称。又f(x)在上为减函数,故在上为增函数, 检验知选D。7.若f(x)是定义在(0,+)上的增函数,且对一切x0满足,且f(6)=1,则不等式f(x+3)-f(1/x)2的解集为 .7. 抽象函数研究方法,赋值和创造使用对应法则及用单调性转化求解.令x=y=1可得f(1)=0;反复用对应法则f(x+3)-f()=f(x2+3x).而2=2f(6),且x0.于是有f(x2+3x)-f(6)f(6);即f()f(6),可得06,解之,0x8. 定义在R上的单调函数,对于任意的实数m、nR,都有f(m+n)f(m)f(n)成立,若对于任意的实数R恒成立,求实数的取值范围 .8. 赋值 奇函数,单调性转化分离参数不等式求解9. 函数定义在上,对任意实数,恒有,且当时,.若集合,若,则实数a的取值范围是 .9.创造使用对应法则和题设条件研究单调性切入,理解集合意义,化归直线和圆的特殊位置求解.赋值,用定义和题设条件证明减函数.设,用对应法则,即为实数上的减函数.由法则和单调性为上的点,则单位圆和恒过定点的直线系相离或相切,即,解得实数a的取值范围为.10.函数f(x)对任意x1,x2R,当x1+x2=1时,恒有f(x1)+f(x2)=1,且f(0)=0,若an=f(0)+f(1/n)+f(2/n)+f(n-1/n),则an= 10.依据对应法则和所求值的结构特征,创造用对应法则,整体把握用等差数列前n项和公式推导方法“反序求和”.由an=0+f(1)+f(1/n)+f(2/n)+f(n-1/n), an= f(n-1/n)+f(n-2/n)+ +f(1/n)+0,相加用对应法则有2an=f(1/n)+f(n-1/n)+f(2/n)+f(n-2/n)+f(n-1/n)+f(1/n)=n+1,故11.设函数f(x)是定义域为R+,且对任意的x,y都有f(xy)=f(x)+f(y),,当且仅当x1时,f(x)1成立,则不等式f()f(ax-3) (0af(x2) 和f(x1)-f(x2)=f(x1/x2)0, 而x1时,f(x)1成立,则x1/x21. 又x1,x2R+,故 x1x2. 由知,由f()f(ax-3) 得,()/(ax-3) 1,且 ax-30,解得3ax5 ,而0a1,故loga5xloga3.12.已知函数 满足:对任意的实数 成立,且 (1)若,则数列的通项公式为 ;(2)不等式 的解集为 12.特殊赋值化为等差型数列“累加法”求通项;赋值用法则判断单调性;特殊性单调性转化解不等式.(1)赋值 ,个等式累加有;(2) 单调性证明中用法则,(3)注意(1)单调性转化解得 刻画抽象函数本质属性的特征量为其对应法则和题设条件,如何创造使用对应法则和题设条件已成为求解的关键.13.已知是上的减函数,且 (1) 对于任意的,并判断 是否为是上减函数的必要条件;(2) 如果(1)中判断成立,试将其推广一般情形(不必证明);若不成立,请写出一个正确的结论(不必证明)。13.利用两函数之间的关系, 即 这说明上的减函数可以得出,即是必要条件;(2) 可推广: 对任意 有 14.已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,bR,都满足f(ab)=af(b)+bf(a). 求f(0),f(1)的值; 判断f(x)的奇偶性,并证明你的结论; 若f(2)=2,(nN),求数列Un的前n项和Sn。解:赋值求值和研究奇偶性.令a=b=o,则f(0)=0.f(1)=f (11)=f(1)+f(1)=2f(1),f(1)=0; f(x)为奇函数;f(1)=f(-1)2=-f(-1)-f(-1)=0,f(_-1)=0,于是f(-x)=f(-1x)=-f(x)+xf(-1)=-f(x),即为奇函数; 若注意到目标,整体思维,构造辅助函数,因f(ab)=af(b)+bf(a).所以.于是,构造的整体抽象函数,满足 注:试回味
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 象棋延时服务课件
- 2025版高新技术产业聘用员工合同协议示范文本
- 2025版企业绿色转型项目咨询与服务合同
- 2025年度礼品定制采购合同-附加礼品定制及品牌合作计划
- 2025大蒜产业链金融支持服务合同
- 2025年度农业合作社三方租地合作合同范本
- 2025版网络安全防护软件源码授权与保密协议标准范本
- 2025年度电力照明设施安全检测合同
- 2025年股权代持转让及管理服务三方合同
- 诸子论与课件
- 2025年海南省通信网络技术保障中心招聘考试笔试试题(含答案)
- 2025年国家卫生健康委医药卫生科技发展研究中心招聘考试笔试试题(含答案)
- 2025至2030中国PE微粉蜡市场需求量预测及前景动态研究报告
- 2025年辅警招聘公安基础知识题库附含参考答案
- 2025年理赔专业技术职务任职资格考试(理赔员·保险基础知识)历年参考题库含答案详解(5套)
- 2025年北京标准租房合同范本下载
- 中华人民共和国治安管理处罚法2025修订版测试题及答案
- 第一单元复习与提高(单元测试)-五年级上册数学沪教版
- 2025年湖北高考历史试题(含答案解析)
- 新学期教学工作会议上校长讲话:把功夫下在课堂里把心思放在学生上把质量落到细节中
- 2025至2030中国环境监测行业市场发展现状及投资前景与策略报告
评论
0/150
提交评论