




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数知识点复习,二次函数知识点导航:,1、二次函数的定义2、二次函数的图像及性质3、求解析式的三种方法4、a,b,c及相关符号的确定5、抛物线的平移6、二次函数与一元二次方程的关系7、二次函数的应用题8、二次函数的综合运用,1、二次函数的定义,定义:形如y=axbxc(a、b、c是常数,a0)的函数。定义要点:a0最高次数为2代数式一定是整式练习:1、y=-x,y=2x-2/x,y=100-5x,y=3x-2x+5,其中是二次函数的有_个。,2.当m_时,函数y=(m+1)-2+1是二次函数?,2、二次函数的图像及性质,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0,开口向上,a0,开口向下,a0,交点在x轴下方,c0,与x轴有一个交点,b2-4ac=0,与x轴无交点,b2-4ac0,则a+b+c0当x=1时,y0,则a-b+c0当x=-1,y0,则a-b+c0B、a0,c0D、a0,b0,c=0B、a0,c=0C、a0,b0,b=0,c0,0B、a0,c0,b=0,c0D、a0,b=0,c0,0,B,A,C,o,o,o,练习:,熟练掌握a,b,c,与抛物线图象的关系,(上正、下负),(左同、右异),c,4.抛物线y=ax2+bx+c(a0)的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a0,b0,c0.,0,b0;b2-4ac0.其中所有正确结论的序号是()A.B.C.D.,a0,c0,b+2a0,2a0,b24ac=0,b24ac0,若抛物线y=ax2+bx+c与x轴有交点,则,b24ac,0,与x轴有两个不同的交点(x1,0)(x2,0),有两个不同的解x=x1,x=x2,b2-4ac0,与x轴有唯一个交点,有两个相等的解x1=x2=,b2-4ac=0,与x轴没有交点,没有实数根,b2-4ac0,例:(1)如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=,此时抛物线y=x2-2x+m与x轴有个交点.,(2)已知抛物线y=x28x+c的顶点在x轴上,则c=.,1,1,16,(3)一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是.,(-2、0)(5/3、0),1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.,解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,-5)所以其解析式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5展开成一般式即可.,7二次函数的综合运用,2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下平移4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.,分析:,(1)由a+b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车制造行业产业集聚效应分析报告
- 2025年汽车轻量化高强度钢材料研发进展与市场应用报告
- 2025年教育数字化教材开发与跨文化教育融合报告
- 机电设备安装工程公司劳动协议
- 江苏省宿迁市沭阳县联考2025-2026学年九年级上学期第一次月考语文试题(含答案)
- 修理厂服务事迹范文
- 2026届北京市普通高中学业水平等级性考试适应性练习历史试题
- 《兼职劳务协议》模板
- 幽默用电安全培训课件
- 巡察经验介绍课件
- 传感器技术与应用电子教案
- 承包铁塔维护合同模板
- 北京师范大学《法律职业伦理》2023-2024学年期末试卷
- 个人出行安全承诺书合同(2篇)
- DB11-T 2021-2022 12345市民服务热线服务与管理规范
- 数学思想方法及其教学课件学习教案
- 安永校招在线测评真题
- 《材料力学性能》课程教学大纲
- 质量信得过班组培训课件
- DL∕T 1768-2017 旋转电机预防性试验规程
- 妇科手术后腹胀的护理
评论
0/150
提交评论