微生物代谢课件资料_第1页
微生物代谢课件资料_第2页
微生物代谢课件资料_第3页
微生物代谢课件资料_第4页
微生物代谢课件资料_第5页
已阅读5页,还剩89页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章微生物的新陈代谢,新陈代谢:发生在活细胞中的各种分解代谢(catabolism)和合成代谢(anabolism)的总和。新陈代谢=分解代谢+合成代谢分解代谢:指复杂的有机物分子通过分解代谢酶系的催化,产生简单分子、腺苷三磷酸(ATP)形式的能量和还原力的作用。合成代谢:指在合成代谢酶系的催化下,由简单小分子、ATP形式的能量和还原力一起合成复杂的大分子的过程。,按物质转化方式分:分解代谢:指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。合成代谢:是指细胞利用简单的小分子物质合成复杂大分子过程。在这个过程中要消耗能量。物质代谢:物质在体内转化的过程。能量代谢:伴随物质转化而发生的能量形式相互转化。,按代谢产物在机体中作用不同分:初级代谢:提供能量、前体、结构物质等生命活动所必须的代谢物的代谢类型;产物:氨基酸、核苷酸等。次级代谢:在一定生长阶段出现非生命活动所必需的代谢类型;产物:抗生素、色素、激素、生物碱等。,第一节微生物产能代谢,最初能源,有机物,还原态无机物,日光,通用能源(ATP),一切生命活动都是耗能反应,因此,能量代谢是一切生物代谢的核心问题。,能量代谢的中心任务,是生物体如何把外界环境中的多种形式的最初能源转换成对一切生命活动都能使用的通用能源-ATP。这就是产能代谢。,化能异养微生物,化能自养微生物,光能营养微生物,在代谢过程中,微生物通过分解作用(光合作用)产生化学能。,这些能量用于:1、合成代谢2、微生物的运动和运输3、热和光。,无论是分解代谢还是合成代谢,代谢途径都是由一系列连续的酶反应构成的,前一步反应的产物是后续反应的底物。,细胞能有效调节相关的反应,生命活动得以正常进行。,某些微生物还会产生一些次级代谢产物。这些物质除有利于微生物生存外,还与人类生产生活密切相关。,一、化能异养微生物的生物氧化和产能,生物氧化就是发生在活细胞内的一切产能性氧化反应的总称。,生物氧化与燃烧的比较,生物氧化的过程,一般包括三个环节:底物脱氢(或脱电子)作用(该底物称作电子供体或供氢体)氢(或电子)的传递(需中间传递体,如NAD、FAD等)最后氢受体接受氢(或电子)(最终电子受体或最终氢受体),生物氧化的形式:物质与氧结合、脱氢脱电子三种,生物氧化的功能为:产能(ATP)、产还原力H产小分子中间代谢物,(一)底物脱氢的四种途径,EMP途径,HMP途径,ED途径,磷酸解酮酶途径,a,a:预备性反应,b,b:氧化还原反应,底物水平磷酸化,底物水平磷酸化,EMP途径(Embden-Meyerhofpathway),EMP途径意义:为细胞生命活动提供ATP和NADH,葡萄糖,葡糖-6-磷酸,果糖-6-磷酸,果糖-1,6-二磷酸,磷酸二羟丙酮,甘油醛-3-磷酸,1,3-二磷酸甘油酸,3-磷酸甘油酸,2-磷酸甘油酸,磷酸烯醇式丙酮酸,丙酮酸,EMP途径关键步骤,1.葡萄糖磷酸化1.6二磷酸果糖(耗能)2.1.6二磷酸果糖2分子3-磷酸甘油醛3.3-磷酸甘油醛丙酮酸总反应式:葡萄糖+2NAD+2Pi+2ADP2丙酮酸+2NADH2+2ATPCoA丙酮酸脱氢酶乙酰CoA,进入TCA,HMP途径,从6-磷酸-葡萄糖开始,即在单磷酸已糖基础上开始降解的故称为单磷酸已糖途径。,HMP途径与EMP途径有着密切的关系,HMP途径中的3-磷酸-甘油醛可以进入EMP途径,磷酸戊糖支路。,HMP途径的一个循环的最终结果是一分子葡萄糖-6-磷酸转变成一分子甘油醛-3-磷酸、3个CO2、6个NADPH。,一般认为HMP途径不是产能途径,而是为生物合成提供大量还原力(NADPH)和中间代谢产物。,HMP途径:葡萄糖经转化成6-磷酸葡萄糖酸后,在6-磷酸葡萄糖酸脱氢酶的催化下,裂解成5-磷酸戊糖和CO2。磷酸戊糖进一步代谢有两种结局:磷酸戊糖经转酮转醛酶系催化,又生成磷酸己糖和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径的一些酶,进一步转化为丙酮酸。称为不完全HMP途径。,HMP途径的总反应:,6葡萄糖-6-磷酸+12NADP+6H2O5葡萄糖-6-磷酸+12NADPH+12H+12CO2+Pi,由六个葡萄糖分子参加反应,经一系列反应,最后回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化成CO2和水),称完全HMP途径。,HMP途径关键步骤:,1、葡萄糖6-磷酸葡萄糖酸2、6-磷酸葡萄糖酸5-磷酸核酮糖5-磷酸木酮糖5-磷酸核糖参与核酸生成3、5-磷酸核酮糖6-磷酸果糖+3-磷酸甘油醛(进入EMP,HMP途径的重要意义,产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成提供还原力,另一方面可通过呼吸链产生大量的能量。与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可以调节戊糖供需关系。为核苷酸和核酸的生物合成提供戊糖-磷酸。,途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、碱基合成及多糖合成。途径中存在37碳的糖,使具有该途径微生物的所能利用利用的碳源谱更为广泛。通过该途径可产生许多种重要的发酵产物。如核苷酸、若干氨基酸、辅酶和乳酸(异型乳酸发酵)等。HMP途径在总的能量代谢中占一定比例,且与细胞代谢活动对其中间产物的需要量相关。,ED途径,ED途径又称2-酮-3-脱氧-6-磷酸葡糖酸(KDPG)裂解途径。1952年在Pseudomonassaccharophila中发现,后来证明存在于多种细菌中(革兰氏阴性菌中分布较广)。ED途径可不依赖于EMP和HMP途径而单独存在,是少数缺乏完整EMP途径的微生物的一种替代途径,未发现存在于其它生物中。,ED途径,ED途径是在研究嗜糖假单孢菌时发现的。,ED途径过程:,葡萄糖KDPG,KDPG醛缩酶,甘油醛-3-磷酸丙酮酸,EMP,丙酮酸,ED途径结果:一分子葡萄糖经ED途径最后生成2分子丙酮酸、1分子ATP,1分子NADPH、1分子NADH。,ED途径在革兰氏阴性菌中分布较广ED途径可不依赖于EMP与HMP而单独存在ED途径不如EMP途径经济。,ED途径的特点,葡萄糖经转化为2-酮-3-脱氧-6-磷酸葡萄糖酸后,经脱氧酮糖酸醛缩酶催化,裂解成丙酮酸和3-磷酸甘油醛,3-磷酸甘油醛再经EMP途径转化成为丙酮酸。结果是1分子葡萄糖产生2分子丙酮酸,1分子ATP。ED途径的特征反应的关键是中间代谢物2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)裂解为丙酮酸和3-磷酸甘油醛。ED途径的特征酶是KDPG醛缩酶。反应步骤简单,产能效率低。此途径可与EMP途径、HMP途径和TCA循环相连接,可互相协调以满足微生物对能量、还原力和不同中间代谢物的需要。好氧时与TCA循环相连,厌氧时进行乙醇发酵。,ED途径的总反应(续),关键反应:2-酮-3-脱氧-6-磷酸葡萄糖酸的裂解催化的酶:6-磷酸脱水酶,KDPG醛缩酶相关的发酵生产:细菌酒精发酵优点:代谢速率高,产物转化率高,菌体生成少,代谢副产物少,发酵温度较高,不必定期供氧。缺点:pH5,较易染菌;细菌对乙醇耐受力低。,磷酸酮解途径,存在于某些细菌如明串珠菌属和乳杆菌属中的一些细菌中。进行磷酸酮解途径的微生物缺少醛缩酶,所以它不能够将磷酸己糖裂解为2个三碳糖。磷酸酮解酶途径有两种:磷酸戊糖酮解途径(PK)途径磷酸己糖酮解途径(HK)途径,磷酸己糖解酮途径,2葡萄糖2葡萄糖-6-磷酸6-磷酸果糖6-磷酸-果糖,同EMP,4-磷酸-赤藓糖乙酰磷酸,2木酮糖-5-磷酸,磷酸己糖解酮酶戊,逆HMP途径,2甘油醛-3-磷酸2乙酰磷酸,2乳酸,2乙酸,乙酸,乙酸激酶,磷酸戊糖酮解途径的特点:,分解1分子葡萄糖只产生1分子ATP,相当于EMP途径的一半;几乎产生等量的乳酸、乙醇和CO2。,磷酸己糖酮解途径的特点:,有两个磷酸酮解酶参加反应;在没有氧化作用和脱氢作用的参与下,2分子葡萄糖分解为3分子乙酸和2分子3-磷酸-甘油醛,3-磷酸-甘油醛在脱氢酶的参与下转变为乳酸;乙酰磷酸生成乙酸的反应则与ADP生成ATP的反应相偶联;每分子葡萄糖产生2.5分子的ATP;许多微生物(如双歧杆菌)的异型乳酸发酵即采取此方式。,(五)三羧酸循环,又称,TCA,循环、,Krebs,循环或柠檬酸循环。在绝大多数异养,微生物的呼吸代谢中起关键作用。其中大多数酶在真核生,物中存在于线粒体基质中,在细菌中存在于细胞质中;只,有琥珀酸脱氢酶是结合于细胞膜或线粒体膜上。,主要产物:,C,3,CH,3,COCoA,NADH+4H,FADH,GTP,3CO,2,呼吸链,呼吸链,(底物水平),12ATP,2ATP,ATP,在物质代谢中的地位:枢纽位置,工业发酵产物:柠檬酸、苹果酸、延胡索酸、琥珀酸和谷氨酸,丙酮酸在进入三羧酸循环之先要脱羧生成乙酰CoA,乙酰CoA和草酰乙酸缩合成柠檬酸再进入三羧酸循环。循环的结果是乙酰CoA被彻底氧化成CO2和H2O,每氧化1分子的乙酰CoA可产生12分子的ATP,草酰乙酸参与反应而本身并不消耗。,TCA循环的重要特点,1、循环一次的结果是乙酰CoA的乙酰基被氧化为2分子CO2,并重新生成1分子草酰乙酸;2、整个循环有四步氧化还原反应,其中三步反应中将NAD+还原为NADH+H+,另一步为FAD还原;3、为糖、脂、蛋白质三大物质转化中心枢纽。4、循环中的某些中间产物是一些重要物质生物合成的前体;5、生物体提供能量的主要形式;6、为人类利用生物发酵生产所需产品提供主要的代谢途径。如柠檬酸发酵、Glu发酵等。,(二)递氢、受氢和ATP的产生,经上述脱氢途径生成的NADH、NADPH、FAD等还原型辅酶通过呼吸链等方式进行递氢,最终与受氢体(氧、无机或有机氧化物)结合,以释放其化学潜能。根据递氢特别是受氢过程中氢受体性质的不同,把微生物能量代谢分为呼吸作用和发酵作用两大类。,发酵作用:没有任何外援的最终电子受体的生物氧化模式;呼吸作用:有外援的最终电子受体的生物氧化模式;呼吸作用又可分为两类:有氧呼吸最终电子受体是分子氧O2;无氧呼吸最终电子受体是O2以外的无机氧化物,如NO3-、SO42-等。,呼吸、无氧呼吸和发酵示意图,C,6,H,12,O,6,-,H,A,-,H,H,B,-,H,C,A,、,B,或,C,AH,2,,,BH,2,或,CH,2,-,H,(,发酵产物:乙醇、,CO,2,乳酸等),脱氢,递氢,受氢,经呼吸链,呼吸,无氧,呼吸,发酵,1/2,O,2,H,2,O,NO,3,-,,,SO,4,2,-,,,CO,2,NO,2,-,,,SO,3,2,-,,,CH,4,1.呼吸作用,有氧呼吸(aerobicrespiration):,以分子氧作为最终电子受体,无氧呼吸(anaerobicrespiration):,以氧化型化合物作为最终电子受体,电子载体不是将电子直接传递给底物降解的中间产物,而是交给电子传递系统,逐步释放出能量后再交给最终电子受体。,1.呼吸作用,呼吸作用与发酵作用的根本区别:,概念:是以分子氧作为最终电子(或氢)受体的氧化。过程:是最普遍、最重要的生物氧化方式。途径:EMP、TCA循环。特点:在有氧呼吸作用中,底物的氧化作用不与氧的还原作用直接偶联,而是底物在氧化过程中释放的电子先通过电子传递链(由各种电子传递体,如NAD,FAD,辅酶Q和各种细胞色素组成)最后才传递到氧。,由此可见,TCA循环与电子传递是有氧呼吸中两个主要的产能环节。,(1)有氧呼吸,(1)有氧呼吸,糖酵解作用,有氧,无氧,葡萄糖,丙酮酸,发酵,三羧酸循环,各种发酵产物,被彻底氧化生成CO2和水,释放大量能量。,定义:由一系列氧化还原势不同的氢传递体组成的一组链状传递顺序。在氢或电子的传递过程中,通过与氧化磷酸化反应发生偶联,就可产生ATP形式的能量。部位:原核生物发生在细胞膜上,真核生物发生在线粒体内膜上。成员:电子传递是从NAD到O2,电子传递链中的电子传递体主要包括FMN、CoQ、细胞色素b、c1、c、a、a和一些铁硫蛋白。这些电子传递体传递电子的顺序,按照它们的氧化还原电势大小排列,电子传递次序如下:,电子传递与氧化呼吸链,MH2NADFMNC0Qb(-0.32v)(0.0v)C1Caa3O2H2O(+0.26)(+0.28)(+0.82v)呼吸链中NAD+/NADH的E0值最小,而O2/H2O的E0值最大,所以,电子的传递方向是:NADHO2上式表明还原型辅酶的氧化,氧的消耗,水的生成。NADH+H+和FADH2的氧化,都有大量的自由能释放。证明它们均带电子对,都具有高的转移势能,它推动电子从还原型辅酶顺坡而下,直至转移到分子氧。电子传递伴随ADP磷酸化成ATP全过程,故又称为氧化呼吸链。,自EMP2NADH2自乙酰CoA2NADH2自TCA6NADH2自TCA2FADH2高能水平低氧化还原势,低能水平高氧化还原势,FPFe-SCyt.bCyt.cCyt.aCyt.a3氧化酶,典型的呼吸链,NAD:含有它的酶能从底物上移出一个质子和两个电子,成为还原态NDAH+H+。FAD和FMN:黄素蛋白的辅基。铁硫蛋白(Fe-S):传递电子的氧化还原载体辅基为分子中的含铁硫的中心部分。存在于呼吸链中几种酶复合体中,参与膜上的电子传递。在固氮、亚硫酸还原、亚硝酸还原、光合作用、分子氢的激活和释放以及链烷的氧化作用中也有作用。在呼吸链的“2Fe+2S”中心每次仅能传递一个电子。泛醌(辅酶Q):脂溶性氢载体。广泛存在于真核生物线粒体内膜和革兰氏阴性细菌的细胞膜上;革兰氏阳性细菌和某些革兰氏阴性细菌则含甲基萘醌。在呼吸链中醌类的含量比其他组分多1015倍,其作用是收集来自呼吸链各种辅酶和辅基所输出的氢和电子,并将它们传递给细胞色素系统。细胞色素系统:位于呼吸链后端,功能是传递电子。,微生物中重要的呼吸链组分,ATP的结构和生成,2.ATP的生成方式:,微生物能量代谢活动中所涉及的主要是ATP(高能分子)形式的化学能。ATP是生物体内能量的载体或流通形式.当微生物获得能量后,都是先将获得的能量转换成ATP.当需要能量时,ATP分子上的高能键水解,重新释放出能量。,光合磷酸化氧化磷酸化,底物水平磷酸化电子传递磷酸化,1.结构:,光合磷酸化:利用光能合成ATP的反应。光合磷酸化作用将光能转变成化学能,以用于从二氧化碳合成细胞物质,主要是光合微生物。光合微生物:藻类、蓝细菌、光合细菌(包括紫色细菌、绿色细菌和嗜盐菌等)。细菌的光合作用与高等植物不同的是,除蓝细菌具有叶绿素、能进行水的裂解进行产氧的光合作用外,其他细菌没有叶绿素,只有菌绿素或其他光合色素,只能裂解无机物(如H2、H2S等)或简单有机物,进行不产氧的光合作用。,氧化磷酸化:利用化合物氧化过程中释放的能量生成ATP的反应。氧化磷酸化生成ATP的方式有两种:底物水平磷酸化不需氧电子传递磷酸化需氧。底物水平磷酸化:底物水平磷酸化是在某种化合物氧化过程中可生成一种含高能磷酸键的化合物,这个化合物通过相应的酶作用把高能键磷酸根转移给ADP,使其生成ATP。这种类型的氧化磷酸化方式在生物代谢过程中较为普遍。催化底物水平磷酸化的酶存在于细胞质内。,在电子传递磷酸化中,通过呼吸链传递电子,将氧化过程中释放的能量和ADP的磷酸化偶联起来,形成ATP。呼吸链中的电子传递体主要由各种辅基和辅酶组成,最重要的电子传递体是泛琨(即辅酶Q)和细胞色素系统。在不同种类的微生物中细胞色素的成员是不同的。通过呼吸链生成的ATP数量主要是根据呼吸链成员的多少而不同,而呼吸链的组成因微生物种类而异,如酵母菌可生成3个ATP,而细菌大约只生成1个ATP磷酸化作用是在电子自供体向最终受体的传递过程中发生的。从氧化营养物质产生的一对电子或氢原子向最终电子受体转移时,中间经过一系列电子传递体,每个电子传递体构成一个氧化还原系统,这一系列电子传递体在不同生物中有其自己一定的排列次序,构成一条电子传递链,因而称为呼吸链。流动的电子通过呼吸链时逐步释放出能量生成ATP。,电子传递磷酸化,呼吸链在传递氢或电子的过程中,通过与氧化磷酸化作用的偶联,产生生物的通用能源ATP。目前获得多数学者接受的是化学渗透学说。主要观点:在氧化磷酸化过程中,通过呼吸链酶系的作用,将底物分子上的质子从膜的内侧传递至外侧,从而造成了质子在膜两侧分布的不均衡,即形成了质子梯度差(又称质子动势、pH梯度等)。这个梯度差就是产生ATP的能量来源,因为它可通过ATP酶的逆反应,把质子从膜的外侧再输回到内侧,结果一方面消除了质子梯度差,同时就合成了ATP。,氧化磷酸化产能机制,(2)无氧呼吸,概念:以无机氧化物中的氧作为最终电子(和氢)受体的氧化作用。一些厌氧和兼性厌氧微生物在无氧条件下进行无氧呼吸。无机氧化物:如NO3-、NO2-、SO42-、S2O32-等。在无氧呼吸过程中,电子供体和受体之间也需要细胞色素等中间电子递体,并伴随有磷酸化作用,底物可被彻底氧化,可产生较多能量,但不如有氧呼吸产生的能量多。如:以硝酸钾为电子受体进行无氧呼吸时,可释放出1796.14KJ自由能。,某些厌氧和兼性厌氧微生物在无氧条件下进行无氧呼吸;,无氧呼吸的最终电子受体不是氧,而是NO3-、NO2-、SO42-、S2O32-、CO2等无机物,或延胡索酸(fumarate)等有机物。,无氧呼吸也需要细胞色素等电子传递体,并在能量分级释放过程中伴随有磷酸化作用,也能产生较多的能量用于生命活动。,由于部分能量随电子转移传给最终电子受体,所以生成的能量不如有氧呼吸产生的多。,(2)无氧呼吸,(2)无氧呼吸,能进行硝酸盐呼吸的细菌被称为硝酸还盐原细菌,主要生活在土壤和水环境中,如假单胞菌、依氏螺菌、脱氮小球菌等。,硝酸盐还原细菌被认为是一种兼性厌氧菌,无氧但环境中存在硝酸盐时进行厌氧呼吸,而有氧时其细胞膜上的硝酸盐还原酶活性被抑制,细胞进行有氧呼吸。,土壤及水环境,氧被消耗而造成局部的厌氧环境,松土,排除过多的水分,保证土壤中有良好的通气条件。,硝酸盐是一种容易溶解于水的物质,通常通过水从土壤流入水域中。如果没有反硝化作用,硝酸盐将在水中积累,会导致水质变坏与地球上氮素循环的中断。,反硝化作用的生态学作用:,好氧性机体的呼吸作用,硝酸盐还原细菌进行厌氧呼吸,反硝化作用在氮素循环中的重要作用,土壤中植物能利用的氮(硝酸盐NO3-)还原成氮气而消失,从而降低了土壤的肥力。,其它厌氧呼吸:,延胡索酸呼吸:兼性厌氧,将延胡索酸还原成琥珀酸,以往都是把琥珀酸的形式作为微生物的一般发酵产物来考虑。实际上在延胡索酸呼吸中,延胡索酸是最终电子受体,而琥珀酸是还原产物。,有关“鬼火”的生物学解释,在无氧条件下,某些微生物在没有氧、氮或硫作为呼吸作用的最终电子受体时,可以磷酸盐代替,其结果是生成磷化氢(PH3),一种易燃气体。当有机物腐败变质时,经常会发生这种情况。若埋葬尸体的坟墓封口不严时,这种气体就很易逸出。农村的墓地通常位于山坡上,埋葬着大量尸体。在夜晚,气体燃烧会发出绿幽幽的光。长期以来人们无法正确地解释这种现象,将其称之为“鬼火”。,厌氧呼吸的产能较有氧呼吸少,但比发酵多,它使微生物在没有氧的情况下仍然可以通过电子传递和氧化磷酸化来产生ATP,因此对很多微生物是非常重要的。除氧以外的多种物质可被各种微生物用作最终电子受体,充分体现了微生物代谢类型的多样性。,3.发酵(fermentation),有机物氧化释放的电子直接交给本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。,有机化合物只是部分地被氧化,因此,只释放出一小部分的能量。,发酵过程的氧化是与有机物的还原偶联在一起的。被还原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。,概念:在生物氧化中发酵是指无氧条件下,底物脱氢后所产生的还原力不经过呼吸链传递而直接交给一内源氧化性中间代谢产物的一类低效产能反应。在发酵工业上,发酵是指任何利用厌氧或好氧微生物来生产有用代谢产物的一类生产方式。发酵途径:葡萄糖在厌氧条件下分解葡萄糖的产能途径主要有EMP、HMP、ED和PK途径。发酵类型:在上述途径中均有还原型氢供体NADH+H+和NADPH+H+产生,但产生的量并不多,如不及时使它们氧化再生,糖的分解产能将会中断,这样微生物就以葡萄糖分解过程中形成的各种中间产物为氢(电子)受体来接受NADH+H+和NADPH+H+的氢(电子),于是产生了各种各样的发酵产物。根据发酵产物的种类有乙醇发酵、乳酸发酵、丙酸发酵、丁酸发酵、混合酸发酵、丁二醇发酵及乙酸发酵等。,发酵作用,C6H12O62CH3COCOOH2CH3CHO2CH3CH2OH,NAD,NADH2,-2CO2,EMP,2ATP,乙醇脱氢酶,该乙醇发酵过程只在pH3.54.5以及厌氧的条件下发生。,酵母菌的乙醇发酵:,当发酵液处在碱性条件下,酵母的乙醇发酵会改为甘油发酵。原因:该条件下产生的乙醛不能作为正常受氢体,结果2分子乙醛间发生歧化反应,生成1分子乙醇和1分子乙酸;,CH3CHO+H2O+NAD+CH3COOH+NADH+H+CH3CHO+NADH+H+CH3CH2OH+NAD+此时也由磷酸二羟丙酮担任受氢体接受3-磷酸甘油醛脱下的氢而生成-磷酸甘油,后者经-磷酸甘油酯酶催化,生成甘油。,2葡萄糖2甘油+乙醇+乙酸+2CO2,概念:有氧条件下,发酵作用受抑制的现象(或氧对发酵的抑制现象)。意义:合理利用能源,通风对酵母代谢的影响,现象:,巴斯德效应(ThePasteureffect),葡萄糖,2-酮-3-脱氧-6-磷酸-葡萄糖酸,3-磷酸甘油醛丙酮酸,丙酮酸,乙醇乙醛,2乙醇,2CO2,2H,2H,+ATP,2ATP,菌种:运动发酵单胞菌等途径:ED,细菌的乙醇发酵,酵母菌(在pH3.5-4.5时)的乙醇发酵脱羧酶脱氢酶丙酮酸乙醛乙醇通过EMP途径产生乙醇,总反应式为:C6H12O6+2ADP+2Pi2C2H5OH+2CO2+2ATP细菌(Zymomonasmobilis)的乙醇发酵通过ED途径产生乙醇,总反应如下:葡萄糖+ADP+Pi2乙醇+2CO2+ATP细菌(Leuconostocmesenteroides)的乙醇发酵通过HMP途径产生乙醇、乳酸等,总反应如下:葡萄糖+ADP+Pi乳酸+乙醇+CO2+ATP同型乙醇发酵:产物中仅有乙醇一种有机物分子的酒精发酵异型乙醇发酵:除主产物乙醇外,还存在有其它有机物分子的发酵。,乳酸发酵,乳酸细菌能利用葡萄糖及其他相应的可发酵的糖产生乳酸,称为乳酸发酵。由于菌种不同,代谢途径不同,生成的产物有所不同,将乳酸发酵又分为同型乳酸发酵、异型乳酸发酵和双歧杆菌发酵。同型乳酸发酵:(经EMP途径)异型乳酸发酵:(经HMP途径)双歧杆菌发酵:(经HK途径磷酸己糖解酮酶途径),葡萄糖,3-磷酸甘油醛,磷酸二羟丙酮,2(1,3-二-磷酸甘油酸),2乳酸2丙酮酸,2NAD+2NADH,4ATP,4ADP,2ATP2ADP,同型乳酸发酵,葡萄糖,6-磷酸葡萄糖,6-磷酸葡萄糖酸,5-磷酸木酮糖,3-磷酸甘油醛,乳酸,乙酰磷酸,NAD+NADH,NAD+NADH,ATPADP,乙醇乙醛乙酰CoA,2ADP2ATP,-2H,-CO2,异型乳酸发酵:,同型乳酸发酵与异型乳酸发酵的比较,葡萄糖乳酸丙酮酸乙醛乙酰CoA甲酸乙醇乙酰乳酸二乙酰3-羟基丁酮2,3-丁二醇,CO2H2,-乙酰乳酸合成酶,-乙酰乳酸脱羧酶,2,3-丁二醇脱氢酶,概念:肠杆菌、沙雷氏菌和欧文氏菌属中的一些细菌具有-乙酰乳酸合成酶系而进行丁二醇发酵。发酵途径:,EMP,2,3-丁二醇发酵,概念:埃希氏菌、沙门氏菌、志贺氏菌属的一些菌通过EMP途径将葡萄糖转变成琥珀酸、乳酸、甲酸、乙醇、乙酸、H2和CO2等多种代谢产物,由于代谢产物中含有多种有机酸,故将其称为混合酸发酵。发酵途径:,葡萄糖琥泊酸草酰乙酸磷酸烯醇式丙酮酸乳酸丙酮酸乙醛乙酰CoA甲酸乙醇乙酰磷酸CO2H2乙酸,丙酮酸甲酸裂解酶,乳酸脱氢酶,甲酸-氢裂解酶,磷酸转乙酰酶,乙酸激酶,PEP羧化酶,乙醛脱氢酶,+2H,pH6.2,混合酸发酵,二自养微生物产ATP的产还原力,化能无机营养型:,这些微生物一般也能以CO2为唯一或主要碳源合成细胞物质,以无机物为电子供体,从无机物的氧化获得能量,从对无机物的生物氧化过程中获得生长所需要能量的微生物一般都是:化能无机自养型微生物,自养微生物,化能自养微生物:,无机物氧化过程中主要通过氧化磷酸化产生ATP,如果作为电子供体的无机物的氧化还原电位足够低,也在氧化磷酸化的过程中产生还原力,但大多数情况下都需要通过电子的逆向传递,以消耗ATP为代价获得还原力。,NH3、亚硝酸(NO2-)等无机氮化物可以被某些化能自养细菌用作能源。,将氨氧化为亚硝酸并获得能量,将亚硝氧化为硝酸并获得能量,1、硝化细菌,亚硝化细菌:,硝化细菌:,这两类细菌往往伴生在一起,在它们的共同作用下将铵盐氧化成硝酸盐,避免亚硝酸积累所产生的毒害作用。,这类细菌在自然界的氮素循环中也起者重要的作用,在自然界中分布非常广泛。,俄国著名微生物学家Winogradsky的杰出贡献:,化能无机自养型微生物的发现:,氧化无机物获得能量;没有光和叶绿素的条件下也能同化CO2为细胞物质(能以CO2为唯一或主要碳源),2、硫的氧化,硫细菌(sulfurbacteria)能够利用一种或多种还原态或部分还原态的硫化合物(包括硫化物、元素硫、硫代硫酸盐、多硫酸盐和亚硫酸盐)作能源。,亚铁(Fe2+)只有在酸性条件(pH低于3.0)下才能保持可溶解性和化学稳定;当pH大于4-5,亚铁(Fe2+)很容易被氧气氧化成为高价铁(Fe3+);,氧化亚铁硫杆菌(Thiobacillusferrooxidans),氧化亚铁硫杆菌(Thiobacillusferrooxidans)在富含FeS2的煤矿中繁殖,产生大量的硫酸和Fe(OH)3,从而造成严重的环境污染。,它的生长只需要FeS2及空气中的O2和CO2,因此要防止其破坏性大量繁殖的唯一可行的方法是封闭矿山,使环境恢复到原来的无氧状态。,(二)光能营养微生物,1.环式光合磷酸化,光合细菌主要通过环式光合磷酸化作用产生ATP。,不是利用H2O,而是利用还原态的H2、H2S等作为还原CO2的氢供体,进行不产氧的光合作用。,通过电子的逆向传递产生还原力。,电子传递的过程中造成了质子的跨膜移动,为ATP的合成提供了能量。,菌绿素,菌绿素*,菌绿素+,QA、QB、,e-,光,Q,e-,Cyt.bc1,Cyt.c2,e-,e-,e-,CO2+5-磷酸核酮糖,23-磷酸甘油醛,葡萄糖,ADP+Pi,ATP,2H2A-2A,2.非环式光合磷酸化,产氧型光合作用(绿色植物、蓝细菌),非环式光合磷酸化的反应式:2NADP+2ADP2Pi+2H2O2NADPH2H+2ATPO2,2H+1/2O2,叶绿素b,叶绿素b*,叶绿素b+,H2O,光,e-,e-,质体醌,Cyt.b,Cyt.f,e-,叶绿素a,叶绿素a+,叶绿素a*,光,铁氧还蛋白,黄素蛋白,NADPH,NADP+,e-,e-,e-,e-,ADP+Pi+,ATP,3.嗜盐菌紫膜的光合作用,嗜盐菌细胞膜,红色部分(红膜),紫色部分(紫膜),一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。,主要含细胞色素和黄素蛋白等用于氧化磷酸化的呼吸链载体,在膜上呈斑片状(直径约0.5mm)独立分布,其总面积约占细胞膜的一半,主要由细菌视紫红质组成。,TCA循环重要功能除产能外,为一些氨基酸和其它化合物的合成提供了中间产物;生物合成中所消耗的中间产物若得不到补充,循环就会中断;回补方式:通过某些化合物的CO2固定作用,一些转氨基酶所催化的反应也能合成草酰乙酸和-酮戊二酸,通过乙醛酸循环,回补途径,通过某些化合物的CO2固定作用使三羧酸循环的中间产物得到回补:丙酮酸羧化酶:CO2+丙酮酸+ATP+H2OMg+草酰乙酸+ADP+Pi磷酸烯醇式丙酮酸羧化酶:CO2+PEP+H2O草酰乙酸+H3PO4苹果酸酶:CO2+丙酮酸+NADPH+H+苹果酸+NADP+,为了能够在己糖或戊糖的中间代谢物上进行好氧生长,异养微生物至少要具备上述几种酶之种的一个酶。,CO2固定作用补充TCA环的中间产物,草酰乙酸,柠檬酸,琥珀酸,异柠檬酸,苹果酸,延胡索酸,乙醛酸,乙酰CoA,乙酰CoA,乙酸,乙酸,乙醛酸循环,能够利用乙酸的微生物具有乙酰CoA合成酶,它使乙酸转变为乙酰CoA;然后在异柠檬酸裂解酶和苹果酸合成酶的作用下进入乙醛酸循环。乙醛酸循环的主要反应:异柠檬酸琥珀酸+乙醛酸乙醛酸+乙酸苹果酸琥珀酸+乙酸异柠檬酸净反应:2乙酸苹果酸,乙醛酸循环,第三节微生物独特合成代谢途径举例,三、自养微生物对CO2固定,(一)卡尔文循坏,1.CO2固定,CO2+1,5-二磷酸核酮糖,不稳定的中间化合物,23-磷酸甘油酸,2.被固定CO2的还原,3-磷酸甘油酸,1,3-二磷酸甘油酸,3-磷酸甘油醛,3-磷酸甘油酸激酶,3-磷酸甘油醛脱氢酶,ATP,ADP,NADPH,NADP+Pi+,二磷酸核酮糖羧化酶,3.接受CO2分子的再生,61,5-二磷酸核酮糖,6C6,123-磷酸甘油酸,123-磷酸甘油醛,103-磷酸甘油醛,65-磷酸戊糖,23-磷酸甘油醛,葡萄糖,6CO2,12ATP,ADP+12Pi+,12NADPH,12NADP+,ATP,ADP+12Pi+,(二)厌氧乙酰-CoA途径,CO2,H2,THF,CH3-THF,CH3-B12,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论