




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量复习【基本概念与公式】 【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。记作:或。2.向量的模:向量的大小(或长度),记作:或。3.单位向量:长度为1的向量。若是单位向量,则。4.零向量:长度为0的向量。记作:。【方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。6.相等向量:长度和方向都相同的向量。7.相反向量:长度相等,方向相反的向量。8.三角形法则:;(指向被减数)9.平行四边形法则: 以为临边的平行四边形的两条对角线分别为,。10.共线定理:。当时,同向;当时,反向。11.基底:任意不共线的两个向量称为一组基底。12.向量的模:若,则,13.数量积与夹角公式:; 14.平行与垂直:;题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。(2)若两个向量不相等,则它们的终点不可能是同一点。(3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD是平行四边形的条件是。(5)若,则A、B、C、D四点构成平行四边形。(6)若与共线, 与共线,则与共线。 (7)若,则。(8)若,则。 (9)若与不共线,则与都不是零向量。(10)若,则。 (11)若,则。题型2.向量的加减运算1.设表示“向东走8km”, 表示“向北走6km”,则 。2.化简 。3.已知,则的最大值和最小值分别为 、 。4.已知的和向量,且,则 , 。5.已知点C在线段AB上,且,则 , 。题型3.向量的数乘运算1.计算:2.已知,则 。题型4根据图形由已知向量求未知向量1.已知在中,是的中点,请用向量表示。2.在平行四边形中,已知,求。题型5.向量的坐标运算1.已知,则点的坐标是 。2.已知,则点的坐标是 。3.若物体受三个力,则合力的坐标为 。4.已知,求,。5.已知,向量与相等,求的值。6.已知,则 。7.已知是坐标原点,且,求的坐标。题型6.判断两个向量能否作为一组基底1.已知是平面内的一组基底,判断下列每组向量是否能构成一组基底:A. B. C. D.2.已知,能与构成基底的是( )A. B. C. D.题型7.结合三角函数求向量坐标1.已知是坐标原点,点在第二象限,求的坐标。2.已知是原点,点在第一象限,求的坐标。题型8.求数量积1.已知,且与的夹角为,求(1),(2),(3),(4)。2.已知,求(1),(2),(3),(4)。题型9.求向量的夹角1.已知,求与的夹角。2.已知,求与的夹角。3.已知,求。题型10.求向量的模1.已知,且与的夹角为,求(1),(2)。2.已知,求(1),(5),(6)。3.已知,求。题型11.求单位向量 【与平行的单位向量:】1.与平行的单位向量是 2.与平行的单位向量是 。题型12.向量的平行与垂直1.已知,(1)为何值时,向量与垂直?(2)为何值时向量与平行?2.已知是非零向量,且,求证:。题型13.三点共线问题1.已知,求证:三点共线。2.设,求证:三点共线。3.已知,则一定共线的三点是 。4.已知,若点在直线上,求的值。5.已知四个点的坐标,是否存在常数,使成立?题型14.判断多边形的形状1.若,且,则四边形的形状是 。2.已知,证明四边形是梯形。3.已知,求证:是直角三角形。4.在平面直角坐标系内,,求证:是等腰直角三角形。题型15.平面向量的综合应用1.已知,当为何值时,向量与平行?2.已知,且,求的坐标。3.已知同向,则,求的坐标。4.已知,则 。5.已知,(1)若与的夹角为钝角,求的范围;(2)若与的夹角为锐角,求的范围。6.已知,当为何值时,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年河南轻工职业学院单招《语文》试题附参考答案详解(综合卷)
- 2026届河南省郑州枫杨外国语中学化学九上期中调研试题含解析
- 2026届广东省惠州市惠东燕岭学校九上化学期中调研模拟试题含解析
- 四川省绵阳市江油实验学校2026届化学九年级第一学期期中学业水平测试试题含解析
- 医疗保障工作总结
- 窗口部门工作总结
- 黑龙江省哈尔滨市道里区2026届英语九年级第一学期期末复习检测模拟试题含解析
- 2026届山东省滨州市部分学校九年级化学第一学期期末统考试题含解析
- 2026届黑龙江省桦南县九年级化学第一学期期中达标检测试题含解析
- 山东省德州市德城区2026届英语九年级第一学期期末考试试题含解析
- 人民调解投标方案(完整技术标)
- ZSMC之山智控 K5系列说明书V1.6-中文
- 2023恒温恒湿实验室工程技术规程
- GB/T 4798.4-2023环境条件分类环境参数组分类及其严酷程度分级第4部分:无气候防护场所固定使用
- 程序设计基础(第3版)(2019年高等教育出版社出版图书)
- (小鼠)常用实验动物生物学特点及其在生物医学教程课件
- GB/T 5023.1-2008额定电压450/750 V及以下聚氯乙烯绝缘电缆第1部分:一般要求
- 第七章-辐射防护分析课件
- 研究生英语阅读综合教程reading more
- 国有企业职务犯罪惩治与预防
- 国家教学示范中心-电子科学与技术中心-国防科技大学
评论
0/150
提交评论