BestTutorial2016Sediment DynamicsPARTA-Jo hohai university pdf_第1页
BestTutorial2016Sediment DynamicsPARTA-Jo hohai university pdf_第2页
BestTutorial2016Sediment DynamicsPARTA-Jo hohai university pdf_第3页
BestTutorial2016Sediment DynamicsPARTA-Jo hohai university pdf_第4页
BestTutorial2016Sediment DynamicsPARTA-Jo hohai university pdf_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

HOHAI UNIVERSITY REPORT ON SEDIMENT PROCESS MARCH 18, 2016 SUBMITTED TO: ASSOC. PROF. XI LI SUMITTED BY: ISHWAR JOSHI M2015076 School of Water Conservancy and Hydropower Engineering 1 Tutorial 1/2: The tutorial contains two parts: 1. To determine the settling velocity as a function of concentration in the combined flocculation and hindered settling range by fitting an empirical relation to experimental data on C(z,t) from a settling column. 2. To use settling velocity formula obtained in the first part to simulate the time-evolution of the concentration profile during settling. Theory: The empirical relation for settling velocity in the region of hindered settling and flocculation is given by WS = (2+2) Where, a, b, n, m are sediment dependent empirical constants. Fig: Settling Velocity variation with suspension concentration 2 Solution in Matlab: Settling Velocity and Concentration Profile Simulations Number of elevation for settling column concentration sampling, nele, is: nele = 8 Number of times for concentration sampling, ntime, is: ntime = 7 Input file name is: setm2.txt Estimated coefficient, m, is: m = 2 Estimated coefficient, n, is: n = 1.4 Estimate suspension concentration for maximum settling velocity, C2 (kg/m3), is: C2 = 6 Calculate coefficient, b, based on equation (4.18) page 4-28 is: b = 8.176622 Estimate maximum settling velocity, Ws2 (m/s), is: Ws2 = 0.02 Calculate coefficient, a, based on equation (4.17) page 4-26 is: a = 0.043003 Do you want to replot for y-axis range? Y/N Y: Y Minimum settling velocity for velocity-concentration plot: y_min = 1e-6 Maximum settling velocity for velocity-concentration plot: y_max = 1e-2 3 Do you want to estimation of the four parameters for settling velocity formula? Y/N Y: Y Estimated coefficient, a, is: a = 0.15 Estimated coefficient, b, is: b = 4 Estimated coefficient, a, is: m = 2 Estimated coefficient, n, is: n = 1.5 Limiting free settling concentration, C1 (kg/m3), is: C1 = 0.2 Do you want to simulate concentration profiles? Y/N Y: Y Time-step for calculation (seconds) is: time = 10 Fig: Initial Profile 4 Fig: Plot of Settling Velocity versus Sediment Concentration Fig: Time Evolution of Concentration Profile 5 The Source code in Matlab is shown in Appendix A. Tutorial 3: Runge Kutta Method: Theory: Runge Kutta is an explicit solution to sedimentation concentration in a basin with one entrance. The explicit 4th-order Runge-Kutta method is given by Ci+1 = Ci + (tF(t, Ci ) + 2k2 + 2 k3 + k4)/6 Where, i =1,2, .refers to the time step, k1 = tF(t, Ci ) , k2 =t F(t+t/2, Ci +k1/2 ) , k3 = t F(t+t/2, Ci +k2/2 ) , k4 = F(t+t/2, Ci +k3) and t is the finite time difference. Solving Runge Kutta Method using Matlab: Solution in Matlab: LGKT h=5 x0=1 y0=2 input is? X=2 Y=3 LGKT h=1 x0=1 y0=1 input is? X=1 Y=2 result is=2.000,0.3782234,0.4000000 6 The Source code in Matlab is shown in Appendix A. Tutorial 4: Numerical Simulation of Suspended Sediment Concentration and Depth of shoaling in a basin with one entrance. Theory: The Sediment concentration in basin with one entrance is given by the equation = F(t, C) = (0 )0 + The above equation can be solved by using explicit 4th-order Runge-Kutta method is given by Ci+1 = Ci + (tF(t, Ci ) + 2k2 + 2 k3 + k4)/6 Where, i =1,2, .refers to the time step, k1 = tF(t, Ci ) , k2 =t F(t+t/2, Ci +k1/2 ) , k3 = t F(t+t/2, Ci +k2/2 ) , k4 = F(t+t/2, Ci +k3) and t is the finite time difference. The settled sediment mass per unit area in the basin , is given by Sm(t) = 0 In Finite form Sm(t) = =1 The Shoaling thickness St(t) = () Solution in Mat Lab: Running the matlab file “sdt0.m”: Calculation of Sediment Rate in a Basin with Single Entrance Screen input Sediment concentration outside basin, ci (kg/m3) = ci = 0.1 Four parameters for the settling velocity formula, a, b, m, n a = 0.15 b = 4.0 m = 2.0 n = 1.5 Limit free settling concentration, c1 (kg/m3) = c1 = 0.2 Tidal-mean water depth in basin, h (m) = h = 5.0 Tidal amplitude, a0 (m) = a0 = 1.0 Tidal period, tp (hr) = tp = 12.5 7 Total simulation time, tt (day) = tt = 5 Output time step, ot (hr) = ot = 0.5 Calculation time step, dt (s) = dt = 60 Bed dry density, rhob (kg/m3) = rhob = 300 Do you want to replot for the figure with different of ranges of concentration and time? Y/N Y: Y Maximum time for the plot (day) = max_x1 = 5 Maximum suspended concentration for the plot = max_y1 = 0.05 This is the Runge - Kutta Order Four Method. Input the function F(t,y) in terms of t and y For example: y-t2+1 Input left and right endpoints on separate lines. A = 0 B = 5 Input the initial condition 0.012 Input a positive integer for the number of subintervals 200 Choice of output method 1. Output to screen 2. Output to text file Please enter 1 or 2 2 Output file output.txt created successfully 8 Do you want to replot for the figure with different of ranges of concentration and time? Y/N Y: Y Maximum time for the plot (day) = max_x2 = 5 Maximum shoaling thickness for the plot = max_y2 = 5 9 The Source code in Matlab is shown in Appendix A. Modelling Framework done in Surfer 10 APPENDIX A Tutorial 1/2: clc clear all format short disp(Settling Velocity and Concentration Profile Simulations) disp(Number of elevation for settling column concentration sampling, nele, is:) nele = input(nele = ); disp(Number of times for concentration sampling, ntime, is:) ntime = input(ntime = ); disp(Input file name is: setm2.txt) % Read file setm2.txt fid = fopen(setm2.txt,r); filetemp = fscanf(fid,%f,8 9); filedata = filetemp.; fclose(fid); %* First estimation for settling velocity formula * disp(Estimated coefficient, m, is:) m = input(m = ); disp(Estimated coefficient, n, is:) n = input(n = ); disp(Estimate suspension concentration for maximum settling velocity, C2 (kg/m3), is:) C2 = input(C2 = ); disp(Calculate coefficient, b, based on equation (4.18) page 4-28 is:) b=C2*(2*m/n-1)0.5); str = sprintf(b = %f,b); disp(str) disp(Estimate maximum settling velocity, Ws2 (m/s), is:) Ws2 = input(Ws2 = ); disp(Calculate coefficient, a, based on equation (4.17) page 4-26 is:) temp_b=(b(n-m)*(2*m/n-1)(m-0.5*n)/(2*m/n-1)0.5); a=(Ws2*1/temp_b); str = sprintf(a = %f,a); disp(str) %Replotting option for y-axis range - Insert Yes or No. If Yes: reply = input(Do you want to replot for y-axis range? Y/N Y: , s); if isempty(reply)|strcmp(reply,Y) reply = Y; disp(Minimum settling velocity for velocity-concentration plot:) ymin = input(y_min = ); disp(Maximum settling velocity for velocity-concentration plot:) ymax = input(y_max = ); for i=2:9 11 for j=2:8 cc(i,j)=filedata(i,j); ww(i,j)=(a*(cc(i,j).n)/(cc(i,j).2+b.2).m; end end loglog(cc,ww,o) xlabel(Sediment Concentration (g/l); ylabel(Settling Velocity (m/s); ylim(ymin ymax) grid off end for i=2:9 for j=2:8 cc(i,j)=filedata(i,j); ww(i,j)=(a*(cc(i,j).n)/(cc(i,j).2+b.2).m; end end loglog(cc,ww,o) title(Fig.1 Experimental data,fontsize,10,fontweight,bold); xlabel(Sediment Concentration (g/l); ylabel(Settling Velocity (m/s); grid off %Option for further estimation of the four parmeters for settling velocity formula - Insert Yes or No. If Yes: reply = input(Do you want to estimation of the four parameters for settling velocity formula? Y/N Y: , s); if isempty(reply)|strcmp(reply,Y) reply = Y; clear a b m n; disp(Estimated coefficient, a, is:) a = input(a = ); disp(Estimated coefficient, b, is:) b = input(b = ); disp(Estimated coefficient, a, is:) m = input(m = ); disp(Estimated coefficient, n, is:) n = input(n = ); disp(Limiting free settling concentration, C1 (kg/m3), is:) C1 = input(C1 = ); c0=C1-0.1; for i=1:1:1000 c(i)=c0+0.1*i; Ws(i)=(a*(c(i).n)/(c(i).2+b2).m); end loglog(c,Ws) title(Fig.2 Calculated of settling velocity and experimentaldata,fontsize,10,fontweight,bold); 12 xlabel(Sediment Concentration (g/l); ylabel(Settling Velocity (m/s); xlim(10-1 102) ylim(10-6 10-2) grid off hold on for i=2:9 for j=2:8 cc(i,j)=filedata(i,j); ww(i,j)=(a*(cc(i,j).n)/(cc(i,j).2+b.2).m; end end loglog(cc,ww,o) hold off end %Option to simulate concentration profiles - Insert Yes or No. If Yes: reply = input(Do you want to simulate concentration profiles? Y/N Y: , s); if isempty(reply)|strcmp(reply,Y) reply = Y; disp(Time-step for calculation (seconds) is:) time = input(time = ); aa = importdata(setm2.txt); bb = aa(2:9,1); cx = aa(2:9,2:8); x = logspace(-2,3); semilogx(cx,bb,-); hold on semilogx(cx,bb,o); hold off axis(1e-2,1e3,0,2); title(Fig.3 Time-evolution of the concentration profile,fontsize,10,fontweight,bold); xlabel(Sediment Concentration (g/l); ylabel(Elevation (m); end Tutorial 3: function = LGKT(h,x0,y0,X,Y) format long h=input(h=); x0=input(x0=); y0=input(y0=); disp(input is?); X=input(X=);Y=input(Y=); n=round(Y-X)/h); i=1;x1=0;k1=0;k2=0;k3=0;k4=0; 13 for i=1:1:n x1=x0+h; k1=-x0*y02;%k1=y0-2*x0/y0;% k2=(-(x0+h/2)*(y0+h/2*k1)2);%k2=(y0+h/2*k1)-2*(x0+h/2)/(y0+h/2*k1);% k3=(-(x0+h/2)*(y0+h/2*k2)2);%k3=(y0+h/2*k2)-2*(x0+h/2)/(y0+h/2*k2);% k4=(-(x1)*(y0+h*k3)2);%k4=(y0+h*k3)-2*(x1)/(y0+h*k3);% y1=y0+h/6*(k1+2*k2+2*k3+k4);%y1=y0+h/6*(k1+2*k2+2*k3+k4);% x0=x1;y0=y1; y=2/(1+x02);%y=sqrt(1+2*x0);% fprintf(result is=%.3f,%.7f,%.7fn,x1,y1,y); end Tutorial 4: clc clear all format short disp(Calculation of Sediment Rate in a Basin with Single Entrance) %Option for input data - select screen input of file input disp(Screen input) disp(Sediment concentration outside basin, ci (kg/m3) =) ci = input(ci = ); disp(Four parameters for the settling velocity formula, a, b, m, n) aa = input(a = ); bb = input(b = ); m = input(m = ); n = input(n = ); disp(Limit free settling concentration, c1 (kg/m3) =;) c1 = input(c1 = ); disp(Tidal-mean water depth in basin, h (m) =) hh = input(h = ); 15 disp(Tidal amplitude, a0 (m) =;) a0 = input(a0 = ); disp(Tidal period, tp (hr) =) tp = input(tp = ); disp(Total simulation time, tt (day) =) tt = input(tt = ); disp(Output time step, ot (hr) =) ot = input(ot = ); disp(Calculation time step, dt (s) =) dt = input(dt = ); disp(Bed dry density, rhob (kg/m3) =) rhob = input(rhob = ); %Option for replotting the figure with different of ranges of concentration and time - Insert Yes or No. If Yes: 14 reply = input(Do you want to replot for the figure with different of ranges of concentration and time? Y/N Y: , s); if isempty(reply)|strcmp(reply,Y) reply = Y; disp(Maximum time for the plot (day) =) max_x1 = input(max_x1 = ); disp(Maximum suspended concentration for the plot =) max_y1 = input(max_y1 = ); end % RUNGE-KUTTA (ORDER 4) % % TO APPROXIMATE THE SOLUTION TO THE INITIAL VALUE PROBLEM: % Y = F(T,Y), A=T= B fprintf(1,Left endpoint must be less than right endpointn); else OK = TRUE; end; end; fprintf(1,Input the initial conditionn); ALPHA = input( ); OK = FALSE; while OK = FALSE fprintf(1,Input a positive integer for the number of subintervalsn); N = input( ); if N = 0 15 fprintf(1,Number must be a positive integern); else OK = TRUE; end; end; if OK = TRUE fprintf(1,Choice of output method:n); fprintf(1,1. Output to screenn); fprintf(1,2. Output to text filen); fprintf(1,Please enter 1 or 2n); FLAG = input( ); if FLAG = 2 NAME = output.txt; OUP = fopen(NAME,wt); else OUP = 1; end; % STEP 1 H = (B*24-A)/N; T = A; W = ALPHA; fprintf(OUP, %5.3f %11.7fn, T, W); % STEP 2 for I = 1:N % STEP 3 % use K1, K2, K3, K4 for K(1), K(2), K(3), K(4) RESP. K1 = H*F(T,W); K2 = H*F(T+H/2.0, W+K1/2.0); K3 = H*F(T+H/2.0, W+K2/2.0); K4 = H*F(T+H,W+K3); % STEP 4 % compute W(I) W = W+(K1+2.0*(K2+K3)+K4)/6.0; % compute T(I) T = A+I*

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论