




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020版高考数学一轮复习精品学案:第八章 解析几何8.4 椭 圆【高考新动向】1考纲点击(1)掌握椭圆的定义、几何图形、标准方程及简单性质;(2)了解椭圆的实际背景及椭圆的简单应用。(3)理解数形结合的思想2热点提示(1)椭圆的定义、标准方程、几何性质是高考的重点,而直线与椭圆的位置关系既是高考的重点也是高考的热点;(2)椭圆的定义、标准方程、几何性质常常独立考查;直线与椭圆的位置关系,往往与向量、函数、不等式等知识交汇命题;(3)选择题、填空题、解答题三种题型都有可能出现.【考纲全景透析】1对椭圆定义的理解:平面内动点P到两个定点,的距离的和等于常数2a,当2a|时,动点P的轨迹是椭圆;当2a=|时,轨迹为线段;当2a|F1F2|这一条件;另一方面要注意由椭圆上任意一点与两个焦点所组成的“焦点三角形”中的数量关系.2.椭圆的标准方程(1)当已知椭圆的焦点在x轴上时,其标准方程为+=1(ab0);当已知椭圆的焦点在y轴上时,其标准方程为+=1(ab0);(2)当已知椭圆的焦点不明确而又无法确定时,其标准方程可设为+=1(m0,n0,mn),这样可避免讨论和复杂的计算;也可设为Ax2+By2=1(A0,B0,AB)这种形式,在解题时更简便.求椭圆的标准方程主要有定义、待定系数法,有时还可根据条件用代入法。用待定系数法求椭圆方程的一般步骤是:(1)作判断:根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能。(2)设方程:根据上述判断设方程。(3)找关系:根据已知条件,建立关于的方程组。(4)得方程:解方程组,将解代入所设方程,即为所求。注:当椭圆的焦点位置不明确而无法确定其标准方程时,可设,可以避免讨论和繁杂的计算,也可以设为,这种形式在解题时更简便。例题解析例1已知F1、F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=_;方法诠释:注意|AF1|+|AF2|=10,|BF1|+|BF2|=10,且|AF1|+|F1B|=|AB|,再结合题设即可得出结论;解析:由椭圆的定义及椭圆的标准方程得:|AF1|+|AF2|=10,|BF1|+|BF2|=10,又已知|F2A|+|F2B|=12,所以|AB|=|AF1|+|BF1|=8.答案:8例2已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程。方法诠释:设椭圆方程为根据题意求得方程。解析:设所求的椭圆方程为,由已知条件得故所求方程为方法指导:1.在解决椭圆上的点到焦点的距离问题时,经常联想到椭圆的定义,即利用椭圆上的点到两焦点距离之和等于2a求解;2.在求椭圆方程时,若已知椭圆上的点到两焦点的距离,可先求出椭圆长轴长,再想法求短轴长,从而得出方程;若已知点的坐标,可先设出椭圆的标准方程,再利用待定系数法求解;当椭圆的焦点不确定时,应考虑焦点在x轴、在y轴两种情形,无论哪种情形,始终有ab0.(二)椭圆的几何性质相关链接1.椭圆几何性质中的不等关系椭圆的几何性质涉及一些不等关系,例如对椭圆,有等,在求与椭圆有关的一些量的范围,或者求这些量的最大值时,经常用到这些不等关系。2.利用椭圆几何性质应注意的问题求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.3.求椭圆的离心率问题的一般思路求椭圆的离心率时,一般是依据题设得出一个关于a、b、c的等式(或不等式),利用a2=b2+c2消去b,即可求得离心率或离心率的范围.或者是:应先将e用有关的一些量表示出来,再利用其中的一些关系构造出关于e的等式或不等式,从而求出e的值或范围。离心率e与的关系:注:椭圆离心率的范围:0e0,直线与椭圆相交,有两个公共点;(2)=0,直线与椭圆相切,有一个公共点;(3)0,总有成立?若存在,求出所有k的值;(2)若,求实数k的取值范围。思路解析:第(1)问为存在性问题,可先假设存在,然后由可知M点为ON中点,用坐标表示相关量可求。第(2)问用坐标表示向量数量积,列式求解即可。解答:椭圆C: ,直线AB的方程为:y=k(x-m).由消去y得设,则则若存在k,使总成立,M为线段AB的中点,M为ON的中点,即N点的坐标为。由N点在椭圆上,则即即故存在k=1,使对任意m0,总有成立。(2)由得即注:探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求学生自己观察、分析、创造性地运用所学知识和方法解决问题,它能很好地考查数学思维能力以及科学的探索精神。因此越来越受到高考命题者的青睐。(1)本题第(1)问是一是否存在性问题,实质上是探索结论的开放性问题。相对于其他的开放性问题来说,由于这类问题的结论较少(只有存在、不存在两个结论有时候需讨论),因此,思考途径较为单一,难度易于控制,受到各类考试命题者的青睐。解答这一类问题,往往从承认结论、变结论为条件出发,然后通过特例归纳,或由演绎推理证明其合理性。探索过程要充分挖掘已知条件,注意条件的完备性,不要忽略任何可能的因素。(2)第(2)问是参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力。在历年高考中占有较稳定的比重。【高考零距离】1. (2020广东高考文科20)在平面直角坐标系中,已知椭圆:()的左焦点为,且点在.求椭圆的方程;设直线同时与椭圆和抛物线:相切,求直线的方程.【解题指南】 (1)根据题意可知从而可解出a的值。问题得解。(2)由题意得直线的斜率一定存在且不为0,设出直线方程分别与椭圆方程和抛物线方程联立,根据直线与椭圆和抛物线相切时满足判别式等于0,可求得直线的方程. 【解析】(1)由题意得,椭圆的方程为.(2) 由题意得直线的斜率一定存在且不为0,设直线方程因为椭圆C的方程为 消去得直线与椭圆相切,。即直线与抛物线:相切,则消去得 即由(1)(2)解得所以直线的方程。2. (2020新课标全国高考文科4)设F1、F2是椭圆E:1(ab0)的左、右焦点,P为直线x=上一点,F1PF2是底角为30的等腰三角形,则E的离心率为( )(A) (B) (C) (D)【解题指南】根据题意画出图形,寻求所满足的数量关系,求得离心率。【解析】选C 设直线与轴交于点,则,在中,故,解得,故离心率3. (2020浙江高考文科8)如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3 B.2 C. D. 【解题指南】分别设出椭圆与双曲线的方程,根据其焦点相同和M,O,N将椭圆长轴四等分得出离心率之间的关系.【解析】选.设双曲线的方程为,椭圆的方程为,由于M,O,N将椭圆长轴四等分,所以, 又所以4(2020新课标全国高考文科4)椭圆的离心率为( )A. B. C. D. 【思路点拨】通过方程确定的值,离心率.【精讲精析】选D 由题意5.(2020福建高考文科1)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为( ) A.2 B.3 C.6 D.8【命题立意】本题考查椭圆的基本概念、平面向量的内积、利用二次函数求最值.【思路点拨】先求出椭圆的左焦点,设P为动点,依题意写出的表达式,进而转化为求解条件最值的问题,利用二次函数的方法求解. 【规范解答】选C,设,则,又因为,又, ,所以 .6.(2020广东高考文科7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A B C D【命题立意】本题考察椭圆的基本性质以及等差数列的定义.【思路点拨】由椭圆长轴的长度、短轴的长度和焦距成等差数列,列出、的关系,再转化为、间的关系,从而求出.【规范解答】选. 椭圆长轴的长度、短轴的长度和焦距成等差数列, , ,即: ,又 , ,即 , (舍去)或 , ,故选.7(2020陕西高考理科20)如图,椭圆C: ()求椭圆C的方程; ()设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由。【命题立意】本题考查了椭圆的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。其中问题(2)是一个开放性问题,考查了观察、推理以及创造性地分析问题、解决问题的能力。【思路点拨】已知的方程组椭圆C的方程假设存在直线l使命题成立结论【规范解答】()由知a2+b2=7, 由 又, 由 解得故椭圆C的方程为()设A,B两点的坐标分别为(x1,y1)(x2,y2)假设存在直线l使成立,()当l与x轴不垂直时,设l的方程为y=kx+m,由l与n垂直相交于P点且得因为由求根公式得: 将代入上式并化简得()当l与x轴垂直时,满足的直线l的方程为,【考点提升训练】一、选择题(每小题6分,共36分)1.(2020泉州模拟)椭圆C:=1(ab0)的焦点为F1,F2,离心率为.过点F1的直线l交椭圆C于A,B两点,且ABF2的周长为8,则b的值为( )(A)1 (B) (C)2 (D)2.设直线l:x-2y+2=0过椭圆的左焦点F和一个顶点B(如图),则这个椭圆的离心率e=( )(A) (B) (C) (D)3.(2020漳州模拟)已知椭圆=1,椭圆左焦点为F1,O为坐标原点,A是椭圆上一点,点M在线段AF1上,且,|=2,则点A的横坐标为( )(A) (B) (C) (D)4.已知椭圆+=1,若此椭圆上存在不同的两点A、B关于直线y=4x+m对称,则实数m的取值范围是( )(A)(,) (B)(,)(C)(,)(D)(,)5.若椭圆+=1的离心率e=,则m的值为( )(A)1 (B)或 (C) (D)3或6.已知F1、F2分别是椭圆+=1(ab0)的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足+=0(O为坐标原点),=0,若椭圆的离心率等于,则直线AB的方程是( )(A)y= (B)y=(C)y= (D)y=二、填空题(每小题6分,共18分)7.方程+=1表示椭圆,则k的取值范围是_8.(易错题)已知F1、F2分别是椭圆+=1(ab0)的左、右焦点,以原点O为圆心,OF1为半径的圆与椭圆在y轴左侧交于A、B两点,若F2AB是等边三角形,则椭圆的离心率等于_.9.(预测题)椭圆M: +=1(ab0)的左,右焦点分别为F1,F2,P为椭圆M上任一点,且|PF1|PF2|的最大值的取值范围是2c2,3c2,其中c=,则椭圆M的离心率e的取值范围是_.三、解答题(每小题15分,共30分)10.(2020武汉模拟)已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求m的取值范围.11.(2020福州模拟)已知椭圆M:=1(ab0)的离心率为,短轴的一个端点到右焦点的距离为2,(1)试求椭圆M的方程;(2)若斜率为的直线l与椭圆M交于C、D两点,点P(1,)为椭圆M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?试证明你的结论.【探究创新】(16分)已知直线x-2y+2=0经过椭圆C: +=1(ab0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x=分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得TSB的面积为?若存在,确定点T的个数,若不存在,请说明理由.答案解析1.【解析】选B.由已知可知4a=8,a=2,又e=,e2=,b=.2.【解析】选A.B(0,1),F(-2,0),故c=2,b=1,a=,e=.3.【解析】选D.设A(x1,y1)则=1,又F1(-5,0),由知M是AF1的中点,M(),=4,解得x1=,x2=(舍去).4.【解析】选B.设A(x1,y1),B(x2,y2),AB的中点M(x,y),kAB=,x1+x2=2x,y1+y2=2y,3x12+4y12=12 ,3x22+4y22=12 ,两式相减得3(x22-x12)+4(y22-y12)=0,即y1+y2=3(x1+x2),即y=3x,与y=4x+m联立得x=-m,y=-3m,而M(x,y)在椭圆的内部,则+1,即m.【方法技巧】点差法解直线与椭圆相交问题的适用条件及技巧对于直线与椭圆相交问题,若题设和待求涉及到弦的中点和所在直线的斜率,求解时一般先设交点坐标,代入曲线方程,再用平方差公式求解,这种解法,大大减少了将直线方程与椭圆方程联立求解带来的繁杂运算.5.【解析】选D.当椭圆+=1的焦点在x轴上时,a=,b=,c=,由e=,得=,解得m=3;当椭圆+=1的焦点在y轴上时,a=,b=,c=,由e=,得=,解得m=.6.【解题指南】由+=0知,A、B两点关于原点对称,设出A点坐标,利用向量列方程求解.【解析】选A.设A(x1,y1),因为+=,所以B(-x1,-y1),=(c-x1,-y1),=(2c,0),又因为=0,所以(c-x1,-y1)(2c,0)=0,即x1=c,代入椭圆方程得y1=,因为离心率e=,所以,a=,b=c,A(c,),所以直线AB的方程是y=.7.【解析】方程+=1表示椭圆,则,解得k3.答案:k38.【解析】因为F2AB是等边三角形,所以A(,)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租车劳动合同范本2篇
- 瓶式氧气吸入课件
- 安全施工培训内容记录课件
- 农业碳汇项目融资策略与风险管理研究报告
- 农业现代化背景下2025年智能农业种植风险防控与绿色生产方案报告
- 球团厂安全规程培训
- 安全教训培训工作通报课件
- 房屋室内拆除工程方案(3篇)
- 以不变的精神面对变化的时代
- 比较教学法在高中语文课堂中的应用
- 4.1 整式(第1课时 单项式) 课件 七年级数学上册 (人教版2024)
- 中国急性缺血性卒中诊治指南(2023)解读
- 常熟理工学院图书馆考试完整题库
- 招聘诚信承诺书
- 装配式混凝土检查井施工及验收规程
- 2024小红书无货源精细化铺货实战课程
- 任正非的创业故事
- 学生实习家长知情同意书(完美版)
- 涉警网络负面舆情应对与处置策略
- 《英国政党制度》课件
- 幽门螺杆菌检测报告
评论
0/150
提交评论