




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市郎溪县郎溪中学2020学年高二数学下学期期末考试试题(含解析)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集,集合,则( )A. B. C. D. 【答案】B【解析】试题分析:由,得,由得,则,故答案为B.考点:集合的运算.2.已知是虚数单位, 复数在复平面内对应的点位于直线上, 则( )A. B. C. D. 【答案】A【解析】分析:等式分子分母同时乘以,化简整理,得出,再得,将的坐标代入中求解详解:,所以。故选B点睛:复数的除法运算公式,在复平面内点在直线上,则坐标满足直线方程。3.已知实数成等差数列,且曲线取得极大值的点坐标为,则等于( )A. -1B. 0C. 1D. 2【答案】B【解析】由题意得,解得由于是等差数列,所以,选B.4.设是不同的直线,是不同的平面,有以下四个命题:若,则 若,则若,则 若,则 . 其中真命题的序号为( )A. B. C. D. 【答案】D【解析】【分析】由题意结合立体几何的结论逐一考查所给的说法是否正确即可.【详解】逐一考查所给的命题:如图所示,正方体中,取平面为平面,平面,直线为,满足,但是不满足,题中所给的命题错误;由面面垂直的性质定理可知若,则,题中所给的命题正确;如图所示,正方体中,取平面为,直线为,直线为,满足,但是,不满足,题中所给的命题错误;由面面垂直的性质定理可知若,则,题中所给的命题正确.综上可得:真命题的序号为.本题选择D选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.5.将两颗骰子各掷一次,设事件“两个点数不相同”, “至少出现一个6点”,则概率等于( )A. B. C. D. 【答案】A【解析】解:由题意事件A=两个点数都不相同,包含的基本事件数是36-6=30至少出现一个6点的情况分二类,给两个骰子编号,1号与2号,若1号是出现6点,2号没有6点共五种2号是6点,一号不是6点有五种,若1号是出现6点,2号也是6点,有1种,故至少出现一个6点的情况是11种=6.设为等差数列的前项和,若,则A. B. C. D. 【答案】B【解析】分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果.详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.7.已知函数,且,其中是导函数,则( )A. B. C. D. 【答案】A【解析】分析:求出原函数的导函数,然后由f(x)=2f(x),求出sinx与cosx的关系,同时求出tanx的值,化简要求解的分式,最后把tanx的值代入即可详解:因为函数f(x)=sinx-cosx,所以f(x)=cosx+sinx,由f(x)=2f(x),得:cosx+sinx=2sinx-2cosx,即3cosx=sinx,所以.所以=.故答案为:A.点睛:(1)本题主要考查求导和三角函数化简求值,意在考查学生对这些知识的掌握水平和分析转化计算能力.(2)解答本题的关键是=.这里利用了“1”的变式,1=.8.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为()A. 240种B. 120种C. 96种D. 480种【答案】A【解析】【分析】由题先把5本书的两本捆起来看作一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘即可得答案。【详解】由题先把5本书的两本捆起来看作一个元素共有种可能,这一个元素和其他的三个元素在四个位置全排列共有种可能,所以不同的分法种数为种,故选A.【点睛】本题考查排列组合与分步计数原理,属于一般题。9.椭圆的左、右焦点分别为,弦过,若的内切圆的周长为, 两点的坐标分别为, ,则( )A. B. C. D. 【答案】A【解析】【分析】设ABF2的内切圆的圆心为G连接AG,BG,GF2设内切圆的半径为r,则2r=,解得r=可得=|F1F2|,即可得出【详解】由椭圆=1,可得a=5,b=4,c=3如图所示,设ABF2的内切圆的圆心为G连接AG,BG,GF2设内切圆的半径为r,则2r=,解得r=则=|F1F2|,4a=|y2y1|2c,|y2y1|=故选:C【点睛】本题考查了椭圆的标准方程定义及其性质、三角形内切圆的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题10.已知函数为偶函数,记 , ,则的大小关系为 ( )A. B. C. D. 【答案】C【解析】试题分析:因为为偶函数,所以,在上单调递增,并且,因为,故选C考点:函数的单调性【思路点睛】本题考察的是比较大小相关知识点,一般比较大小我们可以采用作差法、作商法、单调性法和中间量法,本题的题设中有解析式且告诉我们为偶函数,即可求出参数的值,所以我们采用单调性法,经观察即可得到函数的单调性,然后根据可以通过函数的奇偶性转化到同一侧,进而判断出几个的大小,然后利用函数的单调性即可判断出所给几个值的大小11.如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是( )A. 直线B. 抛物线C. 离心率为的椭圆D. 离心率为3的双曲线【答案】C【解析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状详解:正四面体VABC面VBC不垂直面ABC,过P作PD面ABC于D,过D作DHBC于H,连接PH,可得BC面DPH,所以BCPH,故PHD为二面角VBCA的平面角令其为则RtPGH中,|PD|:|PH|=sin(为VBCA的二面角的大小)又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|PV|:|PH|=sin1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sin,又在正四面体VABC,VBCA的二面角的大小有:sin=1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分故答案为:C点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想(2)解答本题的关键是联想到圆锥曲线的第二定义.12.已定义在上的函数无极值点,且对任意都有,若函数在上与具有相同的单调性,则实数的取值范围为( )A. B. C. D. 【答案】A【解析】分析:易得函数是单调函数,令,则 ,(为常数),求出的单调性,从而求出在的单调性,得到在恒成立,求出的范围即可详解:定义在上的函数的导函数无零点,函数是单调函数,令,则, 在恒成立,故在递增,结合题意在上递增,故在恒成立,故 在恒成立,故 ,故选:A点睛:本题考查了函数的单调性问题,考查导数的应用以及转化思想,属于中档题二、填空题(请将正确答案填在答题卷相应位置)13.已知函数,则_【答案】【解析】分析:求出f(1)=1,再根据定积分法则计算即可详解:f(x)=f(1)x2+x+1,f(x)=2f(1)x+1,f(1)=2f(1)+1,f(1)=1,f(x)=x2+x+1,=(x3+x2+x)=.故答案为:.点睛:这个题目考查了积分的应用,注意积分并不等于面积,解决积分问题的常见方法有:面积法,当被积函数为正时积分和面积相等,当被积函数为负时积分等于面积的相反数;应用公式直接找原函数的方法;利用被积函数的奇偶性得结果.14.2020年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:感染未感染总计注射104050未注射203050总计3070100参照附表,在犯错误的概率最多不超过_的前提下,可认为“注射疫苗”与“感染流感”有关系【参考公式:.】0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828【答案】0.05【解析】分析:直接利用独立性检验公式计算即得解.详解:由题得,所以犯错误的概率最多不超过0.05的前提下,可认为“注射疫苗”与“感染流感”有关系故答案为:0.05.点睛:本题主要考查独立性检验和的计算,意在考查学生对这些知识的掌握水平和解决实际问题的能力.15.已知抛物线的准线与双曲线交于两点,点为抛物线的交点,若为正三角形,则双曲线的离心率是_【答案】【解析】分析:求得抛物线y2=4x的准线为x=1,焦点F(1,0),把x=1代入双曲求得y的值,再根据FAB为正三角形,可得tan30=,解得a的值,可得的值详解:已知抛物线y2=4x的准线为x=1,焦点F(1,0),把x=1代入双曲线求得y=,再根据FAB为正三角形,可得tan30=,解得 a=故 c2=+4,故答案为: 点睛:(1)本题主要考查椭圆、抛物线的定义、标准方程,以及简单性质的应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)求离心率常用的有直接法和方程法,本题利用的是直接法,直接先求a和c的值,再求离心率. 16.已知直线上总存在点,使得过点作的圆:的两条切线互相垂直,则实数的取值范围是_【答案】【解析】分析:若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心(1,2)到直线l的距离,即可求出实数m的取值范围详解:如图,设切点分别为A,B连接AC,BC,MC,由AMB=MAC=MBC=90及MA=MB知,四边形MACB正方形,故,若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心(1,2)到直线l的距离,即m28m200,2m10,故答案为:2m10.点睛:(1)本题主要考查直线和圆位置关系,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题的关键是分析出.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.已知,均为正实数,求证:.【答案】见证明【解析】【分析】方法一:因为,均为正实数,所以由基本不等式可得,两式相加整理即可;方法二:利用作差法证明【详解】解:方法一:因为,均为正实数,所以由基本不等式可得,两式相加,得,所以.方法二:.所以.【点睛】本题考查不等式的证明,一般的思路是借助作差或作商法,条件满足的话也可借助基本不等式证明。18.在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.【答案】(1);(2).【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件,(3)注意锐角三角形的各角都是锐角.(4)把边的关系转化成角,对于求边的取值范围很有帮助试题解析:(1)由,得,所以,则,由,。(2)由(1)得,即,又为锐角三角形,故从而由,所以所以,所以因为所以即考点:余弦定理的变形及化归思想19.如图,三棱柱中,.(1)证明:;(2)若平面平面,求直线与平面所成角的正弦值【答案】(1)见解析; (2) .【解析】【分析】()取AB的中点O,连接OC,OA1,A1B,由已知可证OA1AB,AB平面OA1C,进而可得ABA1C;()易证OA,OA1,OC两两垂直以O为坐标原点,的方向为x轴的正向,|为单位长,建立坐标系,可得,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,1),可求|cos,|,即为所求正弦值【详解】()取AB中点O,连结OC,. 因为,所以. 由于,故为等边三角形,所以.因为,所以平面. 又平面,故. ()由()知,.又平面平面,交线为,所以平面,故,两两相互垂直.以O为坐标原点,的方向为x轴的正方向,为单位长,建立如图所示的空间直角坐标系.由题设知,.则,. 设是平面法向量,则 即 可取.故 ,所以与平面所成角的正弦值为.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.20.某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路堵车的概率为,不堵车的概率为;汽车走公路堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路,丙汽车由于其他原因走公路,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.【答案】(1);(2)【解析】解:(1)由已知条件得2分即,则6分答:的值为(2)解:可能的取值为0,1,2,3 5分6分7分8分的分布列为:012310分所以12分答:数学期望为21.在平面直角坐标系中,直线与抛物线相交于不同的两点(1)如果直线过抛物线的焦点,求的值;(2)如果,证明直线必过一定点,并求出该定点【答案】()-3()过定点,证明过程详见解析.【解析】【分析】根据抛物线的方程得到焦点的坐标,设出直线与抛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车行业供应链风险管理与供应链风险管理培训课程设计报告
- 2025年度楼板安装与售后维护合同
- 2025版暖通工程节能减排技术合作合同
- 2025房地产收购合同-城市综合体商业收购协议
- 2025版幕墙施工劳务分包合同范本(建筑节能减排方案)
- 2025年高科技园区建设招标投标保函范本
- 2025年度男方过错离婚协议书范本及婚姻过错赔偿履行协议
- 2025年度企业顶岗实习就业保障协议
- 2025年度保安服务与城市安全防范体系建设合同
- 2025版企业外部培训与内部培训资源共享合作协议
- 2025年国家网络安全宣传周知识竞赛题库(试题及答案)
- 信息安全基础知识培训课件
- 机械通气临床应用指南
- 1.2《我们都是社会的一员》教学设计 2025-2026学年统编版道德与法治八年级上册
- 2025年全国统一高考数学试卷(新高考二卷)试卷与答案
- 2024年劳动争议调解仲裁法知识竞赛题库与答案
- 2025年高考真题【地理】试卷含答案(全国新课标卷)
- 交通事故处理交通事故委托书
- 2025年广西专业技术人员继续教育公需科目(三)答案
- 彭静山针灸秘验
- 《销售管理实务》ppt课件汇总(完整版)
评论
0/150
提交评论