




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与圆的位置关系切线长定理,2、切线的判定定理:,3、切线的性质定理:,复习提问,1.什么是圆的切线.,答:直线和圆有时,这条直线叫做这个圆的切线,唯一公共点,4、常见辅助线,问题1、经过平面上一个已知点,作已知圆的切线会有怎样的情形?,P,P,P,问题2、经过圆外一点P,如何作已知O的切线?,O,。,A,B,P,思考:假设切线PA已作出,A为切点,则OAP=90,连接OP,可知A在怎样的圆上?,在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长,O,P,A,B,切线与切线长的区别与联系:,(1)切线是一条与圆相切的直线;,(2)切线长是指切线上某一点与切点间的线段的长。,若从O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。,PA=PB,OPA=OPB,证明:PA,PB与O相切,点A,B是切点OAPA,OBPB即OAP=OBP=90OA=OB,OP=OPRtAOPRtBOP(HL)PA=PBOPA=OPB,试用文字语言叙述你所发现的结论,PA、PB分别切O于A、B,PA=PB,OPA=OPB,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,切线长定理,几何语言:,反思:切线长定理为证明线段相等、角相等提供了新的方法,我们学过的切线,常有五个性质:1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径;3、切线垂直于过切点的半径;4、经过圆心垂直于切线的直线必过切点;5、经过切点垂直于切线的直线必过圆心。,6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,六个,A,P,O,。,B,若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.,OP垂直平分AB,证明:PA,PB是O的切线,点A,B是切点PA=PBOPA=OPBPAB是等腰三角形,PM为顶角的平分线OP垂直平分AB,A,P,O,。,B,若延长PO交O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.,CA=CB,证明:PA,PB是O的切线,点A,B是切点PA=PBOPA=OPBPC=PCPCAPCBAC=BC,C,例.PA、PB是O的两条切线,A、B为切点,直线OP交于O于点D、E,交AB于C。,B,A,P,O,C,E,D,(1)写出图中所有的垂直关系,OAPA,OBPB,ABOP,(3)写出图中所有的全等三角形,AOPBOP,AOCBOC,ACPBCP,(4)写出图中所有的等腰三角形,ABPAOB,(5)若PA=4、PD=2,求半径OA,(2)写出图中与OAC相等的角,OAC=OBC=APC=BPC,。,P,B,A,O,(3)连结圆心和圆外一点,(2)连结两切点,(1)分别连结圆心和切点,反思:在解决有关圆的切线长的问题时,往往需要我们构建基本图形。,反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。,1.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,小结:,PA、PB分别切O于A、B,PA=PB,OPA=OPB,OP垂直平分AB,切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。,2.圆的外切四边形的两组对边的和相等,o,o,o,外切圆圆心:三角形三边垂直平分线的交点。外切圆的半径:交点到三角形任意一个定点的距离。,三角形外接圆,三角形内切圆,内切圆圆心:三角形三个内角平分线的交点。内切圆的半径:交点到三角形任意一边的垂直距离。,A,A,B,B,C,C,分析题目已知:如图,ABC的内切圆O与BC、CA、AB分别相交于点D、E、F,且AB9厘米,BC14厘米,CA13厘米,求AF、BD、CE的长。,O,例.如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求PCD的周长(2)如果P=46,求COD的度数,E,过O外一点作O的切线,O,P,A,B,O,例1ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.,解:,设AF=x(cm),BD=y(cm),CEz(cm),AF=4(cm),BD=5(cm),CE=9(cm).,O与ABC的三边都相切,AFAE,BDBF,CECD,例.如图,ABC中,C=90,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=12,AD=8,求O的半径r.,明确,1.一个三角形有且只有一个内切圆;,2.一个圆有无数个外切三角形;,3.三角形的内心就是三角形三条内角平分线的交点;,4.三角形的内心到三角形三边的距离相等。,分析试说明圆的外切四边形的两组对边的和相等,选做题:如图,AB是O的直径,AD、DC、BC是切线,点A、E、B为切点,若BC=9,AD=4,求OE的长.,时逢有时勤珍惜莫待无时空留撼,B,D,E,F,O,C,A,如图,ABC的内切圆的半径为r,ABC的周长为l,求ABC的面积S.,解:设ABC的内切圆与三边相切于D、E、F,,连结OA、OB、OC、OD、OE、OF,,则ODAB,OEBC,OFAC.,SABCSAOBSBOCSAOC,ABODBCOEACOF,lr,设ABC的三边为a、b、c,面积为S,则ABC的内切圆的半径r,结论,三角形的内切圆的有关计算,A,B,C,E,D,F,O,如图,RtABC中,C90,BCa,ACb,ABc,O为RtABC的内切圆.求:RtABC的内切圆的半径r.,设AD=x,BE=y,CEr,O与RtABC的三边都相切,ADAF,BEBF,CECD,解:设RtABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OAAC,OEBC,OFAB。,结论,A,B,C,E,D,F,O,如图,RtABC中,C90,BC3,AC4,O为RtABC的内切圆.(1)求RtABC的内切圆的半径.(2)若移动点O的位置,使O保持与ABC的边AC、BC都相切,求O的半径r的取值范围。,设AD=x,BE=y,CEr,O与RtABC的三边都相切,ADAF,BEBF,CECD,解:(1)设RtABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OAAC,OEBC,OFAB。,解得,r1,在RtABC中,BC3,AC4,AB5,由已知可得四边形ODCE为正方形,CDCEOD,RtABC的内切圆的半径为1。,(2)如图所示,设与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连结OB、OD,则四边形BODC为正方形。,A,B,O,D,C,OBBC3,半径r的取值范围为0r3,点评,几何问题代数化是解决几何问题的一种重要方法。,基础题:,1.既有外接圆,又内切圆的平行四边形是_.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_.3.O是边长为2cm的正方形ABCD的内切圆,EF切O于P点,交AB、BC于E、F,则BEF的周长是_.,E,F,H,G,正方形,22cm,2cm,4.小红家的锅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灌云教育城域网培训教材
- 女性健康怀孕医学科普
- 急诊科护士工作总结模版
- 小儿斜视全麻术后护理
- 2024二年级上黄山奇石教学设计
- 4曹冲称象 课件
- 医学研究生文献阅读汇报
- 三年级下册《体验下排键》教学设计
- 面试技巧培训课件
- 大学生职业规划大赛《电气工程及其自动化专业》生涯发展展示
- 福州市历史建筑保护管理办法(试行)
- JHA及SCL风险评价方法讲解(参考)
- DB11T 1933-2021 人乳库建立与运行规范
- 1.3.1动量守恒定律课件(共13张PPT)
- 国网北京市电力公司授权委托书(用电)
- 白黑白装饰画欣赏黑白装饰画的特点黑白装饰画的表现形式黑白装饰 bb
- 中小学教育惩戒规则(试行)全文解读ppt课件
- 调度指挥与统计分析课程教学设计
- 常暗之厢(7规则-简体修正)
- 终端塔基础预偏值(抬高值)计算表格
- 海外医疗服务委托合同协议书范本模板
评论
0/150
提交评论