




已阅读5页,还剩97页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计算水力学,第三章有限差分的基本理论,第一节基本概念,一维对流方程计算平面为的上半平面。在平面上画出两族平行于坐标轴的直线,把求解域分成矩形的计算网格。网格线的交点称为节点,方向上网格线之间的距离称为空间步长,轴方向上网格线之间的距离t称为时间步长,平面、计算网格,网格节点,节点函数值,网格剖分使得每一空间步长、时间步长均相等,则称该网格为一均匀网格,否则称之为非均匀网格数值解主要是求解节点上的末知变量的数值,利用有限的节点上的值来代替整个求解域内的连续函数值。概念:离散、插值、误差构造差分方程、分析数值误差,第二节偏导数的差商近似,一、差分、差商的基本概念解析函数导数定义差分差商,向前差分向后差分中心差分,一阶导数,对应的差分称为一阶差分。对一阶差分再作一阶差分,所得到的称之为二阶差分。二阶向前差分:,任何阶差分都可以由其低一阶的差分得到:函数的差分与自变量的差分之比,即为函数对自变量的差商一阶向前差商,一阶向后差商一阶中心差商二阶中心差商,二、偏导数的差商近似,展开法通过对差商近似点(,)的展开,可以分析差商对偏导近似的精度,一阶向前差商一阶向后差商,二阶中心差商,边界处偏导数的差商近似,对点(,)进行展开,构造一阶偏导数的二阶精度的差商近似必须有解得,构造二阶偏导数的差商近似必须有解得,构造二阶偏导数具有二阶精度的差商近似必须有解得:,多项式插值法,用多项式插值法把待求函数表示成含待定系数的解析函数,由节点函数值确定该系数,然后对此函数求偏导数,得到逼近偏导数的差商表达式。设函数可用抛物插值公式来近似:,设原点在点的位置上,则有解出待定系数,用高阶多项式插值可得到高阶差商表达式。高阶多项式插值具有龙格不稳定性,使得插值对计算误差十分敏感。多项式插值法在计算流体力学中多用于处理边界处的差商近似。偏导数的差商近似还有其它多种方法,但最终均需用展开来计算其近似的误差,因此在实际计算中通常均用展开法来构造,因为此法在构造差商近似的同时还得出了其近似的误差精度。,第三节差分方程,偏导数用其差商近似来代替偏微分方程转变为相应的代数方程称之为差分方程。对流方程在点(,)成立,在点(,)的对流方程可以近似数差分方程,设,求解域(),定解条件离散表达,定解问题,格式差分方程,例定解问题,采用格式,取,0.5,C=1.0则b取,2,C=1.0则,对同一定解问题的同一差分格式()其不同的空间与时间步长,将得到不同的结果,如果作为原始定解问题的近似解,那一个解精度高呢?。不稳定的解是不能作为原定解问题的近似解的。偏导数的差商近似并非一种,同一偏微分方程的差分方程也并非一个,可以有若干个,对原始定解问题也相应有若干种差分格式。,格式,格式,蛙跳格式,显式格式:由第时间层上的值,可直接算出第时间层上的值的格式。隐式格式:不能直接从时间层上值直接解出,需联立求解层上的值的格式。对同一个定解问题,可以有多种差分格式,多种步长参数来近似,从而也得到若干个差分近似解。那么这些解是否可以都作为原定解问题的近似解?那些解精度高?为什么?相容性、稳定性及收敛性分析,第四节截断误差和相容性,以格式为例,等价方程截断误差,格式的截断误差格式的截断误差蛙跳格式的截断误差,对流方程的差分方程等价形式差分方程和相应的微分方程相容,定解条件差分算子截断误差定解问题相容,第五节收敛性,相容性:是指当自变量的步长趋于零时,差分格式与微分问题的截误差的范数是否趋于零,从而可看出是否能用此差分格式来逼近微分问题。收敛性:是指当自变量步长趋于零时,要求差分格式的解趋于微分方程定解问题的解。要求差分格式的解(数值解)与微分方程定解问题的解(精确解)是一致的。,差分格式的解微分问题的解离散误差差分格式收敛相容性是收敛性的必要条件,相容性是形式上的逼近,收敛性是解的逼近,相容性不一定能保证收敛性,例微分方程定解问题解析解为将,等分为段则步长,差分解为,微分问题格式,离散误差由截断误差分析有,当和,即,则,说明当时,本问题的格式收敛。这种离散化误差的最大绝对值趋于零的收敛性情况称为一致性收敛。,第六节稳定性,定解问题,依赖区间AB和决定域pAB,影响区域,同一微分问题,当采用不同差分格式时,其依赖区间、决定区域和影响区域可以是不一致的。依赖区间、决定区域和影响区域是由差分格式本身的构造所决定的并与步长比有关,定解问题,FTBS格式计算,假设在第j层上的第i点,由于计算误差,得到。设i,,相应于FTBS格式,算例表明了当值不同时计算误差所产生的影响。误差逐渐衰减传播误差无衰减传播误差震荡放大传播数值误差有不同的传播方式,格式使误差逐渐衰减传播称为差分格式稳定,否则称为不稳定。,单增长型的不稳定称为静力不稳定性,过冲型振荡的不稳定称为动力不稳定,vonNeumann稳定性分析方法,定解问题FTBS格式初值误差误差传播方程,误差展开成傅氏级数代入误差传播方程,对任意的有为放大因子,FTBS格式稳定条件,FTBS格式稳定条件格式为一不稳定格式格式稳定条件蛙跳格式稳定条件,VonNeumann稳定性分析法主要用于线性初值问题的稳定性分析。对于非线性问题用局部线性化的方法加以推广。局部线性化方法假定非线性系数变化得很缓慢,因而可用局部网格结点上的函数值代入后作为常数处理,并认为每一网格结点上的计算稳定性与相邻结点无关,以网格结点上最小的局部稳定极限值作为整个差分问题的稳定极限值。,第七节Lax等价定理,相容性是收敛性的必要条件,稳定性与收敛性有一定的联系。Lax等价定理就是阐述相容性、收敛性和稳定性三者之间的关系的。Lax等价定理:对一个适定的线性微分问题及一个与其相容的差分格式,如果该格式稳定则必收敛,不稳定必不收敛。换言之,若线性微分问题适定,差分格式相容,则稳定性是收敛性的必要和充分的条件。,根据此定理,在线性适定和格式相容的条件下,只要证明了格式是稳定的,则一定收敛;若不稳定,则不收敛。由于收敛性的证明往往比稳定性更难,故人们就可以把注意力集中在稳定性的研究上。,第八节差分方程数值效应,微分方程是描述物理量在时间和空间上的连续变化的规律差分方程来描述离散化后物理量的变化规律离散误差使原系统的物理性质和规律遭到歪曲和破坏的作用称为数值效应或离散近似的伪物理效应。必须对这些效应有明确的概念,从物理上来考虑数值格式的合理性,减少数值效应的影响。,一、“逆风”效应,物质的对流输运出现了与波速相反方向传播的不合理现象,称为“逆风”效应,是一伪物理现象的数值效应。对流方程FTCS格式,假定在某瞬时在某一断面处引入某一物理量,,由表可见,物理量向上、向下游两个方向传播,出现了与波速相反方向传播的不合理现象,称之为“逆风”效应。FTCS格式所描述的物理量的运动规律与它所近似的原问题固有的规律相差甚大,不仅计算结果误差很大,而且也往往是引起差分格式不稳定的一个因素,前面已证明了该差分格式是无条件不稳定的。对流方程采用一阶精度FTBS格式或FTFS格式能近似原问题的物理现象。采用何种格式还与波速的方向有关,当为正时采用格式,当为负时采用格式。若的符号在计算过程中会改变,例如潮水河道,则可以采用“逆风”格式:,“逆风”格式,二、物理耗散与弥散,一维行波的波高在一固定时刻,空间上相差一个波长其波高相等,所以称为波数在一固定位置,时间相差一个周期,其波高相等,为频率。表示单位时间传播的距离,称为相速度。物理耗散是指波幅因阻尼作用而衰减的现象弥散是指波的相速度随波数发生变化的现象。,深水波相速度为弥散波或称色散波浅水波相速度为非弥散波,、无耗散和色散的模型,放大因子的模,说明波在传播过程中,经过时刻后振幅没有衰减。放大因子的幅角,表明传播时刻后,同一位置处波的相位迟后为,它是相函数的差;而相速度为与波数无关,没有色散现象。方程描述了无衰减、无弥散的物理现象。,、有耗散的模型,分别为二阶、四阶耗散系数。方程描述了有物理耗散而无色散的波运动。耗散系数引起波幅的衰减,但相速度不发生改变。,、有弥散的模型,、称为三阶、五阶弥散系数方程描述了有弥散的波动,波分量的振幅值不随时间变化,而相速度是波数的函数。,三、数值耗散和弥散,用差分方程逼近微分方程时引入了误差,有时这些误差项使计算结果的幅值衰减和相速度发生变化,其作用相当于流动中的物理耗散和弥散,这种虚假的物理效应称作数值耗散和数值弥散。,例如:对流方程描述的是既无耗散又无弥散的流体运动格式的等价方程,截断面误差所以,代入等价方程,忽略高阶小量得二阶数值耗散系数,方程适定性的要求差分格式的适定性的必要条件为:与该格式的稳定性条件相同,可见通过上述分析出差分格式稳定性的一些必要条件,这种方法称之为方法,可以用于方程组的非线性问题的分析。上述是分析了截断误差的主要部分,如果将后面的高阶小量展开后可知,该格式同样存在弥散,但与耗散相比要小。一般分析主要部分的数值效应而略去高阶小量。,同理有,格式等价方程二阶数值耗散系数格式等价方程二阶数值耗散系数,蛙跳格式等价方程三阶弥散系数,四、混淆误差,空间离散无法辨认小于的波长,这时小于的短波分量会补充到长波分量中,从而使长波分量发生畸变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南郑州海康威视郑州招聘考前自测高频考点模拟试题附答案详解(突破训练)
- 2025年临沂兰山区教育和体育局部分事业单位公开招聘教师(55名)模拟试卷附答案详解(黄金题型)
- 世界著名渔人码头案例分析
- 2025私营单位合作协议范本
- 碱液灼烫安全培训课件
- 建立合作关系协议
- 2025股权转让合同签订破产企业收购协议
- 接口与协议书
- 装修邻居赔偿协议书
- 家庭分家协议书
- 2025中考语文名著《红岩》重点知识讲解及高频考点梳理+练习(学生版+解析版)
- 音乐节舞台搭建及拆除施工方案
- 2025年江苏省农业融资担保有限责任公司招聘笔试参考题库附带答案详解
- 《慢性硬膜下血肿》课件
- PRP治疗注意事项
- 2025年泰和县工投建设集团有限公司及子公司招聘笔试参考题库含答案解析
- 企业事业部制信息化与数字化转型
- GB 5009.229-2025食品安全国家标准食品中酸价的测定
- 高支模工程监理细则
- 环氧乙烷应急救援预案
- 2024-2025学年高中数学 第三章 函数的概念与性质 3.1.1 函数的概念教学设计 新人教A版必修第一册
评论
0/150
提交评论