第一章信号及其描述01.ppt_第1页
第一章信号及其描述01.ppt_第2页
第一章信号及其描述01.ppt_第3页
第一章信号及其描述01.ppt_第4页
第一章信号及其描述01.ppt_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

机械工程测试技术基础,机械工程学院仪器系Tel:2786982,第一章信号描述,第一节信号分类与描述第二节周期信号的频谱第三节瞬变非周期信号的频谱,第一节信号分类与描述,一、信号的分类1、确定性信号和随机信号确定性信号:可表示为一个确定的时间函数,因而可确定其任何时刻的量值。随机信号:具有不能被预测的特性,无法用数学关系式来描述,只能通过统计观察来加以描述的信号。,确定性信号又分为周期信号和非周期信号。周期信号:定义:满足下面关系式的信号:x(t)=x(t+nT0)式中,T0周期。非周期信号:定义:不具有周期重复性的确定性信号。非周期信号又可分成准周期信号和瞬态信号两类。,非周期信号又可分成准周期信号和瞬变非周期信号两类。准周期信号:由多个具有不成比例周期的正弦波之和形成,或者称组成信号的正(余)弦信号的频率比不是有理数。瞬变非周期信号:或在一定时间内存在,或随着时间的增长而衰减至零的信号。,锤击物体的力信号图指数衰减振荡信号,三种瞬变非周期信号,2、连续信号和离散信号分类依据:自变量(即时间t)是连续的还是离散的。信号的幅值是连续的还是离散的;连续信号:自变量和幅值均为连续的信号称为模拟信号;自变量是连续、但幅值为离散的信号,则称为量化信号。离散信号:信号的自变量为离散值、但其幅值为连续值时,则称该信号为被采样信号。信号的自变量及幅值均为离散的,则称为数字信号;,连续信号离散信号,3.因果信号与非因果信号若信号x(t)在t=0作为初始观察时刻,有x(t)0,在该输入信号作用下,因果系统的零状态响应只能出现在的时间区间上,故把从时刻开始的信号称为因果信号,否则为非因果信号。,4、能量信号和功率信号能量信号:例如:在右图所示的电路中,x(t)表示电压,瞬时功率P(t)=x2(t)/R;若R=1,P(t)=x2(t)。瞬时功率对时间的积分即为能量。定义:当x(t)满足关系式则称信号x(t)为有限能量信号,简称能量信号。矩形脉冲、衰减指数信号等均属这类信号。,功率信号:若信号在区间(,)的能量是无限的但它在有限区间(t1,t2)的平均功率有限,即亦即信号具有有限的(非零)平均功率,则称信号为功率有限信号,简称功率信号。,二、信号的时域描述和频域描述时域描述:以时间为独立变量;反映信号的幅值随时间变化的关系;频域描述:以频率为独立变量,由信号的时域描述通过适当方法变换得到;反映信号的频率结构和各频率成分的幅值、相位关系。图中周期方波的傅里叶级数展开式:,上式可改写为:,式中0=2/T0。0称为基波频率,简称基频。,以为独立变量,此式即为该周期方波的频域描述。在信号分析中,将组成信号的各频率成分找出,按序排列,得出信号的“频谱”。若以频率为横坐标、分别以幅值或相位为纵坐标,便分别得到信号的幅频谱和相频谱。图19。,信号的频谱一般是以频率为横坐标、以幅值或相位为纵坐标分别描述,信号的幅值频率为幅频谱,相位频率为相频谱。每个信号都有其特有的幅频谱和相频谱,所以每一个信号在频域描述时都要用幅频谱和相频谱来描述。,表11为两个周期方波及其幅频谱、相频谱。时域中两方波只是相对平移T0/4,其余不变。可以看出,幅频谱相同,但相频谱不同,平移使各频率分量产生了相角。,表11的说明:每个信号都有其特有的幅频谱和相频谱,因此,在频域中每个信号都需要同时用幅频谱和相频谱描述才是完整的。,为什么要对信号进行频域描述:信号的时域描述反映了信号瞬时值随时间变化的情况,频域描述反映了信号的频率组成及其幅值、相角的大小。为解决不同问题,需掌握信号不同方面的特征,因而可采用不同的描述方式。例如:评定机器振动烈度(时域描述)和寻找振源(频域描述)。两种描述方法能互相转换,而且包含同样的信息量。,例如某大型水电站在某一发电工况下,其厂房产生强烈振动。按理论分析和经验估计,振源可能来自水轮机或发电机的机械振动,或来自流道某一部份(如引水管、涡壳、导叶、尾水管)的水体振动。为查找振源及振源向厂房传递的路径,在水轮发电机组和厂房的多处安置拾振器,在流道多处安置压力传感器。试验时,用多台磁带记录仪同步记录近百个测点的振动及压力波动。试验完后,对记录的信号进行频谱分析,查找出强振振源来自导叶与尾水管间的局部水体共振。,第二节周期信号的频谱将周期信号分解为傅立叶级数(简称傅氏级数(Fourierseries),在频域中认识信号的特征提供了重要手段信号的频谱一般是以频率为横坐标、以幅值或相位为纵坐标分别描述,信号的幅值频率为幅频谱,相位频率为相频谱。每个信号都有其特有的幅频谱和相频谱,所以每一个信号在频域描述时都要用幅频谱和相频谱来描述。,一、傅里叶级数的三角函数展开式在有限区间上,一个周期信号x(t)当满足狄里赫利条件时可展开成傅里叶级数:式中,,(1-7),信号x(t)的另一种形式的傅里叶级数表达式:式中,An称信号频率成分的幅值,称初相角。,n1,2,讨论:式中第一项a0为周期信号中的常值或直流分量;从第二项依次向下分别称信号的基波或一次谐波、二次谐波、三次谐波、n次谐波;将信号的角频率0作为横坐标,可分别画出信号幅值An和相角随频率0变化的图形,分别称之为信号的幅频谱图和相频谱图。由于n为整数,各频率分量仅在n0的频率处取值,因而得到的是关于幅值An和相角的离散谱线。周期信号的频谱是离散的!例题11,求图16中周期三角波的傅里叶级数。,二、傅里叶级数的复指数函数展开式由欧拉公式可知:代入式(17)有:令,则,或,这就是傅里叶级数的复指数展开形式。,(1-15),求傅里叶级数的复系数Cn,一般情况下,Cn是复数,可写成,其中,绘制复指数形式的频谱:幅频谱图和相频谱图实频谱图和虚频谱图,注意:复指数函数形式的频谱为双边谱(幅频谱为偶函数,相频谱为奇函数),三角函数形式的频谱为单边谱,二者的量值关系:,周期信号的频谱的特点:周期信号的频谱是离散谱;周期信号的谱线仅出现在基波及各次谐波频率处;各频率分量的谱线高度表示该谐波的幅值或相位角。幅值谱中各频率分量的幅值随着频率的升高而减小,频率越高,幅值越小。在频谱分析中,没必要取次数过高的谐波分量。,三、周期信号的强度表述峰值和峰峰值均值和绝对均值有效值和平均功率,第三节瞬变非周期信号的频谱,一、傅里叶变换与连续频谱设x(t)为(-T0/2,T0/2)区间上的一个周期函数。它可表达为傅里叶级数的形式:式中将cn代入上式得,当T0时,区间(-T0/2,T0/2)变成(-,),另外,频率间隔=0=2/T0变为无穷小量,离散频率n0变成连续频率。将上式中括号中的积分记为X(),则有,(126),(127),(125),在数学上,称X()为x(t)的傅里叶变换,x(t)为X()的傅里叶逆变换,记为把2f代入式(125),则1-26和127变为,(1-28),(1-29),这样就避免了傅里叶变换中出现1/2,简化了公式,且有,非周期函数x(t)存在傅里叶变换的充分条件是x(t)在区间(-,)上绝对可积,即但上述条件并非必要条件。因为当引入广义函数概念之后,许多原本不满足绝对可积条件的函数也能进行傅里叶变换。,小结:从式(129)可知,一个非周期函数可分解成频率f连续变化的谐波的叠加。式中X(f)df的是谐波ej2f的系数,决定着信号的振幅和相位。X(f)或X()为x(t)的连续频谱。由于X(f)一般为实变量f的复函数,故可将其写为将上式中的称非周期信号x(t)的连续幅值谱,称x(t)的连续相位谱。例题13,求矩形窗函数的频谱。,求该函数的频谱:,函数的幅频谱和相频谱分别为,二、傅里叶变换的基本性质奇偶虚实性,讨论:,线性叠加性时-频对称性,它表明傅立叶变换与傅立叶逆变换之间存在对称关系,即信号的波形与信号频谱函数的波形有相互置换关系。利用这个性质,可以根据已知的傅立叶变换,得出相应的变换对,对称性举例,尺度改变性质举例a)k=1b)k=0.5c)k=2,时移和频移特性,卷积特性,微分和积分特性,7.尺度变换特性,三、几种典型信号的频谱1.函数及其频谱(1)定义在时间内矩形脉冲S(t),其面积为1,当0时,S(t)的极限称为函数,也称为单位脉冲函数。函数用标有1的箭头表示。显然(t)的函数值和面积(通常表示能量或强度)分别为,(2)采样性质若f(t)为一连续信号,则有f(0)(t)的函数值无穷大,强度为f(0)。在(,)积分,有,对于有延时t0的函数(t-t0),有,(3)与其他函数的卷积,x(),(4)频谱对(t)取傅里叶变换可见函数具有等强度、无限宽广的频谱,这种频谱通常称为“均匀谱”。,利用对称、时移、频移性质,还可以得到以下傅里叶变换对。,2.正、余弦函数的频谱密度函数,余弦函数的频谱利用欧拉公式,余弦函数可以表达为:其傅里叶变换为,正弦函数的频谱同理,利用欧拉公式及其傅里叶变换有:,等间隔的周期单位脉冲序列函数称为梳状函数,表达式为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论