




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
博弈论与信息经济学(GameTheoryandInformationEconomics),张玲玲中国科学院研究生院管理学院zhangll,1,优选内容,主要内容简介,第一章概述-人生处处皆博弈第一篇非合作博弈理论第二章完全信息静态信息博弈-纳什均衡第三章完全信息动态搏弈-子博弈精炼纳什均衡第四章不完全信息静态博弈-贝叶斯纳什均衡第五章不完全信息动态博弈-精练贝叶斯纳什均衡,2,优选内容,第二篇信息经济学第六章委托-代理理论(I)第七章委托-代理理论(II)第八章逆向选择与信号传递,主要内容简介,3,优选内容,第三章完全信息动态搏弈-子博弈精炼纳什均衡,一博弈扩展式表述二子博弈精练纳什均衡三应用举例,4,优选内容,博弈的战略表述,案例-房地产开发项目-假设有A、B两家开发商市场需求:可能大,也可能小投入:1亿,假定市场上有两栋楼出售:需求大时,每栋售价1.4亿,需求小时,售价7千万;如果市场上只有一栋楼需求大时,可卖1.8亿需求小时,可卖1.1亿,5,优选内容,博弈战略表述,不开发,开发商A,开发,不开发,开发,不开发,开发商B,开发商A,开发,不开发,开发,开发商B,需求小的情况,需求大的情况,博弈的战略式表述,6,优选内容,一博弈扩展式表述,博弈的扩展式表述包括三个要素:参与人集合每个参与人的战略集合由战略组合决定的每个参与人的支付,进入者,进入,不进入(0,300),在位者,市场进入阻挠博弈树,不可置信威胁,合作(40,50),斗争(-10,0),7,优选内容,A,开发,不开发,N,N,大,小,1/2,1/2,大,小,1/2,1/2,B,B,B,B,开发,不开发,开发,不开发,开发,不开发,开发,不开发,(4,4),(8,0),(-3,-3),(1,0),(0,8),(0,0),(0,1),(0,0),参与人集合参与人行动顺序参与人的行动空间参与人的信息集参与人的支付函数外生事件的概率分布,房地产开发博弈,8,优选内容,一博弈扩展式表述,博弈的基本构造结:包括决策结和终点结两类;决策结是参与人行动的始点,终点结是决策人行动的终点.结满足传递性和非对称性x之前的所有结的集合,称为x的前列集P(x),x之后的所有结的集合称为x的后续集T(x)。枝:枝是从一个决策结到它的直接后续结的连线,每一个枝代表参与人的一个行动选择.信息集:每个信息集是决策结集合的一个子集,该子集包括所有满足下列条件的决策结:1每个决策结都是同一个参与人的决策结;2该参与人知道博弈进入该集合的某个决策结,但不知道自己究竟处于哪一个决策结.,9,优选内容,A,开发,不开发,N,N,大,小,1/2,1/2,大,小,1/2,1/2,B,B,B,B,开发,不开发,开发,不开发,开发,不开发,开发,不开发,(4,4),(8,0),(-3,-3),(1,0),(0,8),(0,0),(0,1),(0,0),B在决策时不确切地知道自然的选择;B的决策结由4个变为2个,房地产开发博弈,10,优选内容,A,开发,不开发,N,N,大,小,1/2,1/2,大,小,1/2,1/2,B,B,B,B,开发,不开发,开发,不开发,开发,不开发,开发,不开发,(4,4),(8,0),(-3,-3),(1,0),(0,8),(0,0),(0,1),(0,0),B知道自然的选择;但不知道A的选择(或A、B同时决策),房地产开发博弈,11,优选内容,一博弈扩展式表述,只包含一个决策结的信息集称为单结信息集,如果博弈树的所有信息都是单结的,该博弈称为完美信息博弈。自然总是假定是单结的,因为自然在参与人决策之后行动等价于自然在参与人之前行动但参与人不能观测到自然的行动。不同的博弈树可以代表相同的博弈,但是有一个基本规则:一个参与人在决策之前知道的事情,必须出现在该参与人决策结之前。,12,优选内容,A,B,坦白,抵赖,B,B,A,A,坦白,抵赖,坦白,抵赖,(-8,-8),(0,-10),(-10,0),(-1,-1),坦白,抵赖,坦白,抵赖,坦白,抵赖,(-8,-8),(0,-10),(-10,0),(-1,-1),囚徒困境博弈的扩展式表述,囚徒困境博弈的扩展式表述,13,优选内容,智猪博弈的扩展式表述?,等待,小猪,大猪,按,等待,按,案例2-智猪博弈,14,优选内容,第三章完全信息动态搏弈-子博弈精炼纳什均衡,一博弈扩展式表述二子博弈精练纳什均衡扩展式表述博弈的纳什均衡子博弈精练纳什均衡用逆向归纳法求子搏弈精练纳什均衡承诺行动与子搏弈精练纳什均衡逆向归纳法与子搏弈精练纳什均衡的存在问题三应用举例,15,优选内容,博弈的划分,博弈的划分:从参与人行动的先后顺序:静态博弈和动态博弈静态博弈:参与人同时选择行动或非同时行动但后行动者并不知道前行动者采取了什么具体行动;动态博弈:参与人行动有先后顺序,且后行动者能够观察先行动者选择的行动。,16,优选内容,博弈的划分,参与人对其他参与人(对手)的特征、战略空间及支付函数的知识:完全信息博弈和不完全信息博弈。完全信息:每一个参与人对所有其他参与人的(对手)的特征、战略空间及支付函数有准确的知识,否则为不完全信息。,17,优选内容,博弈的划分:,18,优选内容,完全信息静态博弈的特点?,占优均衡DSE,重复剔除占优均衡IEDE,纯战略纳什均衡PNE,混合战略纳什均衡MNE,19,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),考虑下列问题:一个博弈可能有多个(甚至无穷多个)纳什均衡,究竟哪个更合理?纳什均衡假定每一个参与人在选择自己的最优战略时假定所有其他参与人的战略是给定的,但是如果参与人的行动有先有后,后行动者的选择空间依赖于前行动者的选择,前行动者在选择时不可能不考虑自己的行动对后行动者的影响。子博弈精练纳什均衡的一个重要改进是将“合理纳什均衡”与“不合理纳什均衡”分开。,20,优选内容,完全信息动态博弈-子博弈精练纳什均衡(举例)泽尔腾(1965),进入者,进入,不进入(0,300),在位者,合作(40,50),斗争(-10,0),市场进入阻挠博弈树,特点:剔除博弈中包含的不可置信威胁。承诺行动-破釜沉舟-背水一战给定进入者进入,剔除(进入,斗争),(进入,默许)是唯一的子博弈精练纳什均衡-举例(结婚-反对),不可置信威胁,支付函数,行动,21,优选内容,二子博弈精练纳什均衡,一个纳什均衡称为精练纳什均衡,当只当参与人的战略在每个子博弈中都构成纳什均衡,也就是说,组成精练纳什均衡的战略必须在每一个子博弈中都是最优的。一个精练纳什均衡首先必须是一个纳什均衡,但纳什均衡不一定是精练纳什均衡。承诺行动-当事人使自己的威胁战略变得可置信的行动。,22,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),泽尔腾引入子博弈精练纳什均衡的概念的目的是将那些不可置信威胁战略的纳什均衡从均衡中剔除,从而给出动态博弈的一个合理的预测结果,简单说,子博弈精练纳什均衡要求均衡战略的行为规则在每一个信息集上是最优的。,23,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),曹操与袁绍的仓亭之战,曹操召集将领来献破袁之策,程昱献了十面埋伏之计,他让曹操退军河上,诱袁前来追击,到那时“我军无退路,必将死战,可退袁矣”。曹操采纳此计,令许褚诱袁军军至河上,曹军无退路,操大呼曰:“前无去路,诸军何不死战!”,众军奋力回头反击,袁军大败。,24,优选内容,第三章完全信息动态搏弈-子博弈精炼纳什均衡,一博弈扩展式表述二子博弈精练纳什均衡扩展式表述博弈的纳什均衡子博弈精练纳什均衡用逆向归纳法求子搏弈精练纳什均衡承诺行动与子搏弈精练纳什均衡逆向归纳法与子搏弈精练纳什均衡的存在问题三应用举例,25,优选内容,战略的表述,战略:参与人在给定信息集的情况下选择行动的规则,它规定参与人在什么情况下选择什么行动,是参与人的“相机行动方案”。,在静态博弈中,战略和行动是相同的。作为一种行动规则,战略必须是完备的。,26,优选内容,扩展式表述博弈的纳什均衡,足球,男的策略:足球,芭蕾选择足球;还是选择芭蕾。女的策略:(足球,芭蕾),(芭蕾,足球)(芭蕾,芭蕾),(足球,足球)1、追随策略:他选择什么,我就选择什么2、对抗策略:他选择什么,我就偏不选什么3、芭蕾策略:不管他选什么,我都选芭蕾;4、足球策略:不管他选什么,我都选足球。,策略即:如果他选择什么,我就怎样行动的相机行动方案。在扩展式博弈里,参与人是相机行事,即“等待”博弈到达一个自己的信息集(包含一个或多个决策结后,再采取行动方案。,什么是动态博弈?,27,优选内容,扩展式表述博弈的纳什均衡,若A先行动,B在知道A的行动后行动,则A有一个信息集,两个可选择的行动,战略空间为:(开发,不开发);B有两个信息集,四个可选择的行动,B有四个纯战略:开发策略:不论A开发不开发,我开发;追随策略:A开发我开发,A不开发我不开发;对抗策略:A开发我不开发,A不开发我开发;不开发策略不论A开发不开发我不开发,简写为:(开发,开发),(开发,不开发),(不开发,开发),(不开发,不开发),括号内的第一个元素对应A选择“开发”时B的选择,第二个元素对应A选择“不开发”时B的选择。,什么是参与人的战略?,28,优选内容,扩展式,开发,开发,开发,不开发,不开发,开发,不开发,不开发,开发,不开发,开发商B,开发商A,战略式,开发,(开发,不开发),纳什均衡与均衡结果:存在三个纯战略纳什均衡:(不开发,(开发,开发),(开发,(不开发,开发),(开发,(不开发,不开发)两个均衡结果:(开发,不开发)(不开发,开发)注意:均衡不同于均衡结果,29,优选内容,扩展式,开发,开发,开发,不开发,不开发,开发,不开发,不开发,开发,不开发,开发商B,开发商A,战略式,开发,(开发,不开发),路径在扩展式博弈中,所有n个参与人的一个纯战略组合决定了博弈树上的一个路径。(开发,不开发,开发)决定了博弈的路径为A开发B不开发-(1,0)(不开发,开发,开发)决定了路径:?,30,优选内容,第三章完全信息动态搏弈-子博弈精炼纳什均衡,一博弈扩展式表述二子博弈精练纳什均衡扩展式表述博弈的纳什均衡子博弈精练纳什均衡用逆向归纳法求子搏弈精练纳什均衡承诺行动与子搏弈精练纳什均衡逆向归纳法与子搏弈精练纳什均衡的存在问题三应用举例,31,优选内容,子博弈精炼纳什均衡,泽尔腾引入子博弈精练纳什均衡的概念的目的是将那些不可置信威胁战略的纳什均衡从均衡中剔除,从而给出动态博弈的一个合理的预测结果,简单说,子博弈精练纳什均衡要求均衡战略的行为规则在每一个信息集上是最优的。,32,优选内容,子博弈精炼纳什均衡-不可置信威胁,美国普林斯顿大学古尔教授在1997年的经济学透视里发表文章,提出一个例子说明威胁的可信性问题:两兄弟老是为玩具吵架,哥哥老是要抢弟弟的玩具,不耐烦的父亲宣布政策:好好去玩,不要吵我,不管你们谁向我告状,我都把你们两个关起来,关起来比没有玩具更可怕。现在,哥哥又把弟弟的玩具抢去玩了,弟弟没有办法,只好说:快把玩具还我,不然我就要去告诉爸爸。各个想,你真要告诉爸爸,我是要倒霉的,可是你不告状不过没有玩具玩,而告了状却要被关禁闭,告状会使你的境遇变得更坏,所以你不会告状,因此哥哥对弟弟的警告置之不理。的确,如果弟弟是会算计自己利益的理性人,在这样的环境下,还是不告状的好。可见,弟弟是理性人,他的告状威胁是不可置信的。,33,优选内容,子博弈精练纳什均衡,A,开发,不开发,B,B,开发,不开发,开发,(-3,-3),(1,0),(0,1),(0,0),不开发,(不开发,(开发,开发),(开发,(不开发,开发),(开发,(不开发,不开发),如果A选择开发,B的最优选择是不开发,如果A选择不开发,B的最优选择是开发,A预测到自己的选择对B的影响,因此开发是A的最优选择。子博弈精练纳什均衡结果是:A选择开发,B选择不开发。,x,x,对于(不开发,(开发,开发),这个组合之所以构成纳什均衡,是因为B威胁不论A开发还是不开发,他都将选择开发,A相信了B的威胁,不开发是最优选择,但是A为什么要相信B的威胁呢?毕竟,如果A真开发,B选择开发得-3,不开发得0,所以B的最优选择是不开发。如果A知道B是理性的,A将选择开发,逼迫B选择不开发。自己得1,B得0,即纳什均衡(不开发,(开发,开发)是不可置信的。因为它依赖于B的一个不可置信的威胁。同样:(不开发,不开发)也是一个不可置信威胁,纳什均衡(开发,(不开发,不开发)是不合理的。,34,优选内容,子博弈精练纳什均衡,泽尔腾引入子博弈精练纳什均衡的概念的目的是将那些不可置信威胁战略的纳什均衡从均衡中剔除,从而给出动态博弈的一个合理的预测结果,简单说,子博弈精练纳什均衡要求均衡战略的行为规则在每一个信息集上是最优的。什么是子博弈,什么是子博弈精练纳什均衡?有没有更好的方法找到子博弈精练纳什均衡?,35,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),子博弈:是原博弈的一部分,它本身也可以作为一个独立的博弈进行分析:(1)子博弈必须从一个单结信息点开始:只有决策者在原博弈中确切地知道博弈进入一个特定的决策结时,该决策结才能作为一个子博弈的初始结。如果信息集包含两个以上的决策结,则这两个都不可以作为子博弈的初始结(见下页)。(2)子博弈的信息集和支付向量都直接继承自原博弈,即当x和x在原博弈中属于同一信息集时,他们在子博弈中才属于同一信息集。习惯上,任何博弈的本身称为自身的一个子博弈。,36,优选内容,A,开发,不开发,X,X,大,小,1/2,1/2,大,小,1/2,1/2,B,B,B,B,开发,不开发,开发,不开发,开发,不开发,开发,不开发,(4,4),(8,0),(-3,-3),(1,0),(0,8),(0,0),(0,1),(0,0),参与人X的信息集不能开始一个子博弈,否则的话,参与人B的信息将被切割。,37,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),不开发,不开发,房地产开发博弈,找出房地产开发博弈的子博弈,(不开发,(开发,开发),(开发,(不开发,开发),(开发,(不开发,不开发),38,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),子博弈精练纳什均衡:扩展式博弈的战略组合是一个子博弈精练纳什均衡,如果:(1)它是原博弈的纳什均衡;(2)它在每一个子博弈上给出纳什均衡。,39,优选内容,A,开发,不开发,B,B,开发,不开发,开发,(1,0),(0,1),(0,0),(-3,-3),x,x,房地产开发博弈,(不开发,(开发,开发),(开发,(不开发,开发),(开发,(不开发,不开发)在c上构成均衡,在b上不构成;在b和c上都构成在c上构成均衡,在b上不构成,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),不开发,判断下列均衡结果哪个构成子博弈精练纳什均衡?,不开发,b,c,40,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,这条路径称为“均衡路径”,博弈树上的其他路径称为“非均衡路径”。纳什均衡只要求均衡战略在均衡路径的决策结上是最优的;而构成子博弈精练纳什均衡不仅要求在均衡路径上策略是最优的,而且在非均衡路径上的决策结上也是最优的。这是纳什均衡与子博弈精练纳什均衡的实质区别。,41,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),战略是参与人行动规则的完备描述,它要告诉参与人在每一种可预见的情况下(即每一个决策结)上选择什么行动,即使这种情况实际上没有发生(甚至参与人并不预期它会发生)。因此,只有当一个战略规定的行动规则在所有可能的情况下都是最优的,它才是一个合理的可置信的战略,子博弈精练纳什均衡就是要剔除那些只在特定情况下是合理的而在其他情况下不合理的行动规则。,42,优选内容,第三章完全信息动态搏弈-子博弈精炼纳什均衡,一博弈扩展式表述二子博弈精练纳什均衡扩展式表述博弈的纳什均衡子博弈精练纳什均衡用逆向归纳法求子搏弈精练纳什均衡承诺行动与子搏弈精练纳什均衡逆向归纳法与子搏弈精练纳什均衡的存在问题三应用举例,43,优选内容,用逆向归纳法求-子博弈精练纳什均衡,1,U,D,L,(3,1),(0,0),2,2,2,R,给定博弈达到最后一个决策结,该决策结上行动的参与人有一个最优选择,这个最优选择即该决策结开始的子博弈的纳什均衡倒数第二个决策结,找倒数第二个的最优选择,这个最优选择与我们在第一步找到的最优选择构成一个纳什均衡。,如此重复直到初始结。每一步都得到对应于子博弈的一个纳什均衡,并且根据定义,该纳什均衡一定是该子博弈的子博弈的纳什均衡,这个过程的最后一步得到整个博弈的纳什均衡,44,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),用逆向归纳法求子博弈精练纳什均衡对于有限完美信息博弈,逆向归纳法求解子博弈精练纳什均衡是一个最简便的方法。,房地产开发博弈,45,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),1,U,D,L,(1,1),2,2,0,R,U,(3,0),(0,2),2,D,子博弈精练纳什均衡(U,U),L).U和L分别是参与人1和参与人2在非均衡路径上的选择。逆向归纳法求解子博弈精练纳什均衡的过程,实质上是重复剔除劣战略的过程:从最后一个决策结依次剔除每个子博弈的劣战略,最后生存下来的战略构成精练纳什均衡。,46,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),用逆向归纳法求解的子博弈精练纳什均衡也要求“所有的参与人是理性的”是共同知识。如果博弈由多个阶段组成,则从逆向归纳法得到的均衡可能并不非常令人信服。,47,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),进入者,进入,不进入(0,300),在位者,市场进入阻挠博弈树,不可置信威胁,支付函数,行动,合作(40,50),斗争(-10,0),48,优选内容,完全信息动态博弈-子博弈精练纳什均衡泽尔腾(1965),练习:参与人1(丈夫)和参与人2(妻子)必须独立决定出门时是否带伞。他们知道下雨和不下雨的可能性军委50%,支付函数为:如果只有一人带伞,下雨时带伞者的效用为-2.5,不带伞者的效用为-3不下雨时带伞的效用为-1,不带的效用为0;如两人都不带伞,下雨时每人的效用为-5,不下雨时每人的效用为1;给出下列四种情况下的扩展式及战略式表述:(1)两人出门前都不知道是否会下雨;并且两人同时决定是否带伞(即每一方在决策时都不知道对方的决策);(2)两人在出门前都不知道是否会下雨,但丈夫先决策,妻子观察到丈夫是否带伞后才决定自己是否带伞;(3)丈夫出门前知道是否会下雨,但妻子不知道,但丈夫先决策,妻子后决策;(4),同(3),但妻子先决策,丈夫后决策.,49,优选内容,第三章完全信息动态搏弈-子博弈精炼纳什均衡,一博弈扩展式表述二子博弈精练纳什均衡扩展式表述博弈
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 21684:2025 EN Fans - Laboratory test methods for air circulating fans
- 压力管道培训课件合集
- 2025年制造业行业智能制造技术应用前景研究报告
- 商场员工消防安全培训课件
- 2025年工业0行业智能制造技术应用前景研究报告
- 压力容器维修安全培训课件
- 2025年人工智能在医疗健康领域应用前景预测报告
- 国家事业单位招聘2025民族文化宫招聘拟聘用人员(第三批)笔试历年参考题库附带答案详解
- 国家事业单位招聘2025商务部配额许可证事务局第一次招聘15人笔试历年参考题库附带答案详解
- 北京市2025北京人民艺术剧院招聘6人笔试历年参考题库附带答案详解
- 公路施工质量培训课件
- 国际篮联三对三篮球比赛记录表
- 07FK02防空地下室通风设备安装图集
- 室内装饰装修施工工艺标准规范及管理流程
- 【拓展阅读】类文阅读《燧人氏钻木取火》
- 李建涛员工从“老板”做起课件
- 海船船员甲类三管轮实习记录簿
- 注采压力分布规律研究课件
- 填料及表面处理培训课件
- 法院民事调解协议书
- 2022年人口变动情况抽样调查表
评论
0/150
提交评论