湘教版2.5.2全等三角形的判定(SAS)ppt课件_第1页
湘教版2.5.2全等三角形的判定(SAS)ppt课件_第2页
湘教版2.5.2全等三角形的判定(SAS)ppt课件_第3页
湘教版2.5.2全等三角形的判定(SAS)ppt课件_第4页
湘教版2.5.2全等三角形的判定(SAS)ppt课件_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,1,欢迎您的光临指导,全等三角形的判定定理(SAS),桃源县漳江中学文辉,湘教版八年级上册,.,2,一、创设情境,导入新课,1、什么叫全等图形?,能够完全重合的两个图形叫作全等图形;,2、全等三角形有哪些性质?,三组对应边相等;,三组对应角相等。,什么叫全等三角形?,能够完全重合的两个三角形叫作全等三角形。,3、ABCDEF,DEF的周长是40cm,AB=10cm,BC=16cm,则DF=_cm。,14,.,3,二、合作交流,新知探究,2、要画一个三角形与原三角形全等,至少需要几个与边或角大小有关的条件呢?,想一想:,1、两个三角形满足什么条件就能全等呢?,.,4,3cm,3cm,二、合作交流,新知探究,只给一个条件,(一组对应边或一组对应角),只给一组对应边相等时如:,.,5,只给一组对应角相等时如:,45,45,只给一个条件,一个条件,不能判定两个三角形全等,二、合作交流,新知探究,(一组对应边或一组对应角),.,6,已知一组边一组角分别对应相等时如:,3cm,3cm,30,30,给出两个条件时,二、合作交流,新知探究,(一边一角、两边、两角),.,7,给出两个条件时(一边一角、两边、两角),已知两组边分别对应相等时如:,6cm,4cm,4cm,二、合作交流,新知探究,.,8,给出两个条件时(一边一角、两边、两角),已知两组角分别对应相等时如:,30,45,30,45,二、合作交流,新知探究,两个条件,不能判定三角形全等,.,9,那给出三个条件呢?它有哪些可能?,二、合作交流,新知探究,两边一角分别对应相等两角一边分别对应相等三边分别对应相等三角分别对应相等,.,10,【分组合作】,1、画有一个角为30的三角形,并使这角的两边分别为2cm、3cm;2、画有一个角为45的三角形,并使这角的两边分别为3cm、4cm;3、画有一个角为60的三角形,并使这角的两边分别为4cm、5cm,【合作交流】请把你画出来的三角形与同桌的进行比较,你有什么发现?,重合,二、合作交流,新知探究,做一做:,.,11,猜测:,二、合作交流,新知探究,有两边和它们的夹角分别相等的两个三角形全等。,验证:,1平移,通过平移发现:这两个三角形全等!,.,12,猜测:,二、合作交流,新知探究,有两边和它们的夹角分别相等的两个三角形全等。,验证:,2旋转,A,B,A,B,A,B,3,3,4,4,通过旋转发现:这两个三角形全等!,.,13,猜测:,二、合作交流,新知探究,有两边和它们的夹角分别相等的两个三角形全等。,验证:,3翻折(轴反射),通过翻折发现:这两个三角形全等!,4,4,5,5,A,A,B,C,C,B,.,14,二、合作交流,新知探究,结论:,两边及其夹角分别相等的两个三角形全等,简记为边角边,几何语言:,在ABC与ABC中,ABCABC,AB=ABB=BBC=BC,全等三角形的判定定理:,(或SAS),(SAS),.,15,_=_(已知)A=A(公共角)_=_(已知)AECADB(),AO=DO(已知)_=_()BO=CO(已知)AOBDOC(),在下列推理中填写需要补充的条件,使结论成立:(1)如图,在AOB和DOC中,AOB,DOC,对顶角相等,SAS,(2)如图,在AEC和ADB中,,AE,AD,AC,AB,SAS,.,16,三、应用迁移,知识巩固,例1如图,AB和CD相交于点O,且AO=BO,CODO求证:ACOBDO,A,C,B,D,O,分析:ACOBDO有哪些已知条件?够吗?,.,17,例1如图,AB和CD相交于点O,且AO=BO,CODO求证:ACOBDO,A,C,B,D,O,例题解析,证明:,AO=BOAOC=BOD(对顶角相等)CO=DO,在ACO和BDO中,ACOBDO,(SAS),.,18,例2已知:如图,AC=AD,CAB=DAB.求证:ACBADB.,A,B,C,D,分析:ACBADB这两个条件够吗?,.,19,AC=ADCAB=DABAB=AB(公共边),已知:如图,AC=AD,CAB=DAB.求证:ACBADB.,A,B,C,D,证明:,在ACB和ADB中,ACBADB,(SAS),例题解析,.,20,四、思维拓展,能力提升,例3已知:如图,AB=AC,点E、F分别是AC,AB的中点求证:BE=CF,.,21,B,C,E,F,A,在ABE和ACF中,ABDACE(SAS)EBCF(全等三角形对应边相等),例3已知:如图,AB=AC,点E、F分别是AC,AB的中点求证:BE=CF,例题解析,证明:点E、F分别是AC,AB的中点且AB=AC,AE=AF,.,22,A,B,D,A,B,C,SSA不能判定全等,四、思维迁移,拓展延伸,两边及其这两边任意一边的对角分别相等,能判断两个三角形全等吗?即SSA能判断两个三角形全等吗?,.,23,1、边角边定理:,有两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”),2、在应用时,怎样寻找已知条件:,已知条件包含两部分,一是已知中给出的,二是图形中隐含的(如公共边,公共角、对顶角等)所以找条件可从:已知中找,图形中看.,这节课,你收获了什么?,3、证两个三角形全等时的书写要求:,先指出在哪两个三角形中证全等;再按定理顺序列出三个条件,并用括号把它们括在一起;写出结论.,五、学习小结,.,24,六、当堂检测,1如图(1),AB=AC,要使ABDACD,应添加的条件是(应用SAS定理,请添加一个条件),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论