


已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市清华大学2020届高三数学上学期11月中学生标准学术能力诊断性测试试题(二卷)理(含解析)本试卷共150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )a. b. c. d. 【答案】a【解析】【分析】根据集合并集的定义求出,根据集体补集的定义求出.【详解】因为,所以,又因为集合,所以,故本题选a.【点睛】本题考查了集合的并集、补集运算,掌握集合的并集、补集的定义是解题的关键.2.已知空间三条直线,若l与m异面,且l与n异面,则( )a. m与n异面b. m与n相交c. m与n平行d. m与n异面、相交、平行均有可能【答案】d【解析】【分析】根据题意作出图形,进行判断即可.【详解】解:空间三条直线l、m、n若l与m异面,且l与n异面,则可能平行(图1),也可能相交(图2),也m与n可能异面(如图3),故选d【点睛】本题考查空间直线的位置关系,着重考查学生的理解与转化能力,考查数形结合思想,属于基础题3.复数满足,则( )a. 恒等于1b. 最大值为1,无最小值c. 最小值为1,无最大值d. 无最大值,也无最小值【答案】c【解析】【分析】设复数,其中,由题意求出,再计算的值【详解】解:设复数,其中,由,得,解得;,即有最小值为1,没有最大值故选:【点睛】本题考查了复数的概念与应用问题,是基础题4.某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )a. 16b. 32c. 44d. 64【答案】b【解析】【分析】由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,底面然后由直角三角形面积公式求解【详解】解:由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,底面则该几何体的表面积故选:【点睛】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题5.已知,则“”是“”的( )a. 充分不必要条件b. 必要不充分条件c. 充分必要条件d. 既不充分也不必要条件【答案】b【解析】【分析】首先判断由,能不能推出,而后再看由,能不能推出,然后通过充分性、必要性的定义得出答案.【详解】由不等式,可以构造一个函数:,可以判断该函数为偶函数且时,函数单调递增.当时,而,这时可以为负数、正数、零,因此的大小关系不确定,因此由“”不一定能推出“”.当成立时,利用偶函数的性质,可以得到:,而,因此有,所以有且,如果,则有,所以,这与矛盾,故,故本题选b.【点睛】本题考查了必要不充分条件的判断,构造函数,利用函数的性质和不等式的性质是解题的关键.6.函数yln|x|cos(2x)的图像可能是( )a. b. c. d. 【答案】d【解析】【分析】根据函数的奇偶性,和特殊值,可判断。【详解】解:所以函数是奇函数,关于原点对称,故排除;当时,故故排除故选:【点睛】本题考查函数的奇偶性及已知函数解析式确定其函数图象问题,属于基础题。7.已知两个不相等的非零向量,满足,且与的夹角为60,则的取值范围是( )a. b. c. d. 【答案】d【解析】【分析】设,由已知与的夹角为可得,由正弦定理得,从而可求的取值范围【详解】解:设,如图所示:则由又与的夹角为,又由由正弦定理得故选:【点睛】本题主考查了向量的减法运算的三角形法则,考查了三角形的正弦定理及三角函数的性质,属于中档题8.已知随机变量的分布列,则下列说法正确的是( )a. 存x,y(0,1),e()b. 对任意x,y(0,1),e()c. 对任意x,y(0,1),d()e()d. 存在x,y(0,1),d()【答案】c【解析】【分析】表示出期望与方差,利用基本不等式证明不等关系。【详解】解:依题意可得,因为所以即故,错误;即,故成立;故错误故选:【点睛】本题考查简单随机变量的分布列中期望和方差的运算,属于难题。9.设函数,若,则的取值范围是a. b. c. d. 【答案】a【解析】【分析】由题意构造新函数,结合所给条件和函数的性质确定的取值范围即可【详解】令,其中,取可得 取可得 取可得 由可得:, 将代入可得:故选a【点睛】本题主要考查构造函数解题的方法,整体代换的数学思想等知识,属于比较困难的试题10.已知f1,f2分别为双曲线的左、右焦点,若在双曲线右支上存在点p,使得点f2到直线pf1的距离为a,则该双曲线的离心率的取值范围是( )a. b. c. d. 【答案】b【解析】【分析】设过且与一条渐近线平行的直线的方程,依题意在双曲线右支上存在点p,使得点到直线的距离为,则点到直线距离大于,可求出与的关系,即可求出离心率的取值范围。【详解】解:双曲线的渐近线为,由极限思想,设过且与一条渐近线平行的直线的方程为即,依题意若在双曲线右支上存在点p,使得点到直线的距离为,则点到直线距离大于,即即故选:【点睛】本题考查双曲线中离心率的范围的求解,极限思想的运用,属于中档题。11.如图,在菱形abcd中,abc60,e,f分别是边ab,cd的中点,现将abc沿着对角线ac翻折,则直线ef与平面acd所成角的正切值最大值为( )a. b. c. d. 【答案】d【解析】【分析】建立空间直角坐标系,设二面角为,用含的式子表示点坐标,利用向量法表示出线面角的正弦值的平方,构造函数利用函数的单调性求出,即可求出线面角的正切值的最大值。【详解】解:如图,以的中点为坐标原点,建立空间直角坐标系,设二面角为,可证,设棱形的边长为,则,易知平面的法向量设直线与平面所成角为,则令,则时即在上单调递增;时即在上单调递减;则故选:【点睛】本题考查利用空间向量法求线面角的最值问题,综合性比较强,难度比较大。12.己数列an满足a11,an1lnan1,记sna1 a2an,t表示不超过t的最大整数,则s2019的值为( )a. 2019b. 2018c. 4038d. 4037【答案】d【解析】【分析】首先求出数列的前几项,猜想时构造函数证明猜想是正确的,即可求出.【详解】解:依题意得,可猜想时证明:令则可得在单调递减,在单调递增.即,满足条件,故猜想正确;故选:【点睛】本题考查由递推公式求数列的和,综合性较强,难度比较大。二、填空题:本大题共4小题,每小题5分,共20分.13.上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为_【答案】【解析】由直线y=kx与圆相交得 所以概率为 .14.如图,在abc中,abac,bc,a60,abc的面积等于,则角平分线ad的长等于_.【答案】【解析】【分析】由已知利用三角形的面积公式可求,由余弦定理可得,联立解得:,根据余弦定理可求的值,利用角平分线可得,结合,解得的值,在中,由余弦定理可得的值【详解】解:,的面积等于,解得:,由余弦定理,可得:,解得:,由联立解得:,或(由于,舍去), 为角平分线,可得,且,解得:,在中,由余弦定理可得:故答案为: 【点睛】本题主要考查了三角形的面积公式,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题15.已知数列an满足anan1152n,其前n项和为sn,若sns8恒成立,则a1的取值范围为_.【答案】【解析】【分析】根据题意设,由递推式表示出、,要使恒成立则解得。【详解】解:设,因为,则,;可知数列奇数项是递减的,且偶数项也是递减的.且当时当时要使恒成立则解得即故答案为:【点睛】本题考查数列的递推关系式及数列的前项和的性质,属于中档题。16.已知p为椭圆c:上一个动点,f1、f2是椭圆c的左、右焦点,o为坐标原点,o到椭圆c在p点处的切线距离为d,若,则d_.【答案】【解析】【分析】计算,的值得出点坐标,再求出切线方程,利用点到直线的距离公式计算【详解】解:设,则,不妨设在第一象限,则,故以为圆心以为半径的圆为:,以为圆心以为半径的圆为:,得:,代入椭圆方程可得:,故,当时,由得,故,椭圆在处的切线的斜率切线方程为:,即,原点到切线的距离故答案为:【点睛】本题考查了椭圆的性质,切线的求法,点到直线的距离应用,属于中档题三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.已知函数f(x)sinxcosx(1)求函数f(x)的单调递增区间;(2)在abc中,角a,b,c所对的边分别是a,b,c,若f(b),b3,求abc面积的最大值.【答案】(1),;(2).【解析】【分析】(1)利用辅助角公式将函数化简,根据正弦函数的单调性求出函数的单调区间;(2)由(1)可求利用余弦定理及重要不等式,可求面积最大值。【详解】解:(1)令,解得,故函数的单调递增区间为,(2)由或,或,是三角形的内角,即当且仅当时, 的面积取最大值是【点睛】本题考查三角函数的性质,余弦定理在解三角形中的应用,属于一般题。18.如图,已知四棱锥pabcd中,底面abcd是直角梯形,ad/bc,bc2ad,adcd,pd平面abcd,e为pb的中点.(1)求证:ae/平面pdc;(2)若bccdpd,求直线ac与平面pbc所成角的余弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)取的中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面(2)推导出,由,得,再推导出,从而平面,进而平面,连结,则就是直线与平面所成角,由此能求出直线与平面所成角的余弦值【详解】解:(1)证明:取的中点,连结、,是的中点,且,且,四边形是平行四边形,又平面,平面(2)解:,是等腰三角形,又,平面,平面,又,平面,平面,又,平面,连结,则就是直线与平面所成角,设,在中,解得,在中,解得,在中,直线与平面所成角的余弦值为【点睛】本题考查线面平行的证明,考查线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题19.已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球.(1)求取出的4个球中恰有1个红球的概率;(2)设为取出的4个球中红球的个数,求的分布列和数学期望.【答案】(1);(2)分布列见解析,【解析】【分析】(1)设事件“从甲盒内取出的个红球;事件为“从乙盒内取出的个红球”,表示出事件的概率,取出的4个球中恰有1个红球的,包含两个基本事件,利用互斥事件和概率计算公式计算;(2)为取出的4个球中红球的个数,则可能的取值为0,1,2,3,4,结合(1)中信息分别求出相应的概率,写出分布列即可【详解】(1)设事件“从甲盒内取出个红球;事件为“从乙盒内取出的个红球” 则, 设事件为“取出的4个球中恰有1个红球”,取出的4个球中恰有1个红球的概率为,(2)可能的取值为0,1,2,3,4由(1)得,则的分布列为:01234即【点睛】本题考查互斥事件、相互独立事件、离散型随机变量的分布列,考查运用概率知识解决实际问题的能力20.如图,斜率为k的直线l与抛物线y24x交于a、b两点,直线pm垂直平分弦ab,且分别交ab、x轴于m、p,已知p(4,0).(1)求m点的横坐标;(2) 求面积的最大值.【答案】(1);(2)【解析】【分析】(1)设,运用点差法和直线的斜率公式和中点坐标公式,解方程可得所求坐标;(2)设直线即,与抛物线联立,运用韦达定理和弦长公式,以及点到直线的距离公式,化简整理,运用导数判断单调性,可得最大值【详解】解:(1)设,则,而,由得,即;(2)设直线即,与抛物线联立得,则,所以,而到直线的距离为,所以,又由于,所以,令,则且,所以,令,则,当,当时,故,即面积的最大值为8【点睛】本题考查抛物线的方程和性质,直线和抛物线方程联立,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题21.已知函数.(1)若a0,求函数f(x)值域;(2)设函数f(x)的两个零点为x1,x2,且x1x2,求证:x1x2e2.【答案】(1);(2)证明见解析【解析】【分析】(1)求出函数的导数,即可计算出函数的最大值,即可求出函数的值域。(2)因为可得,设则,要证即证构造函数证明其恒大于零即可。【详解】解(1)当时,令解得当时,,在上单调递增,当时,,在上单调递减,即函数的值域为(2)不妨设,即设要证即证即设在单调递增,即【点睛】本题考查导数与函数,利用导数求函数的最值及证明不等式,属于难题。(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.在平面直角坐标系xoy中,曲线c的参数方程为(为参数),在以坐标原点o为极点,x轴的正半轴为极轴的极坐标系中,点p的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线c的普通方程;(2)若q是曲线c上的动点,m为线段pq的中点,直线l上有两点a,b,始终满足|ab|4,求mab面积的最大值与最小值.【答案】(1),;(2)最大值为,最小值为.【解析】【分析】(1)由,可将直线的方程转化为直角坐标方程,由曲线的参数方程消去参数,可得其普通方程;(2)设,由条件可得,再由到直线的距离求出最值即可【详解】解:(1)直线的极坐标方程为,即由,可得直线的直角坐标方程为,将曲线参数方程,消去参数,得曲线的普通方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校教师教学反思与成长心得合集
- 经编工国庆节后复工安全考核试卷含答案
- 野生植物培植工中秋节后复工安全考核试卷含答案
- 机关单位驾驶员考核管理办法解析
- 现代物流信息系统架构设计
- 扩印洗印设备装配调试工节假日前安全考核试卷含答案
- 泥瓦作文物修复师节假日前安全考核试卷含答案
- 镁氯化工节假日前安全考核试卷含答案
- 开放大学金融课程历年考试题目
- 金属屋面工节假日前安全考核试卷含答案
- 脊柱骨科课件教学
- 物业服务培训课件大纲
- 家庭教育指导行业2025年市场规模与增长趋势报告
- 急性腹泻病教学课件
- 2025年版住宅房屋租赁合同范本下载
- 2-5跨学科实践制作隔音房间模型八年级物理学案人教版
- 特殊人才考核管理办法
- 巩固脱贫成果全面推进乡村振兴政策培训测试题(附答案)
- 第一次月考综合卷(试卷)-2025-2026学年外研版(三起)英语五年级上册(含答案含听力原文无音频)
- 新交际英语(2024)二年级上册全册核心素养教案
- 2025四川省硬笔书法考试题目及答案
评论
0/150
提交评论