变量间的相互关系ppt课件_第1页
变量间的相互关系ppt课件_第2页
变量间的相互关系ppt课件_第3页
变量间的相互关系ppt课件_第4页
变量间的相互关系ppt课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.3相关性、最小二乘估计与统计案例,-2-,考纲要求:1.会做两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).3.了解回归分析的思想、方法及其简单应用.4.了解独立性检验的思想、方法及其初步应用.,-3-,1.相关关系:当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫作相关关系.与函数关系不同,相关关系是一种非确定性关系.2.散点图:表示具有相关关系的两个变量的一组数据的图形叫作散点图,它可直观地判断两变量的关系是否可以用线性关系表示.若这些散点分布在从左下角到右上角的区域,则称两个变量正相关;若这些散点分布在从左上角到右下角的区域,则称两个变量负相关.3.回归分析:对具有相关关系的两个变量进行统计分析的方法叫作回归分析.在线性回归模型y=bx+a+e中,因变量y的值由自变量x和随机误差e共同确定,即自变量x只能解释部分y的变化,在统计中,我们把自变量x称为解释变量,因变量y称为预报变量.,-4-,-5-,5.相关系数:,它主要用于相关量的显著性检验,以衡量它们之间的线性相关程度.当r0时表示两个变量正相关,当r0时表示两个变量负相关.|r|越接近1,表明两个变量的线性相关性越强;当|r|接近0时,表明两个变量间几乎不存在线性相关性.,-6-,6.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为x1,x2和y1,y2,其样本频数列联表(称为22列联表)为,22列联表,构造一个随机变量,其中n=a+b+c+d为样本容量.,-7-,(3)独立性检验:利用随机变量2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.,-8-,2,3,4,1,5,1.下列结论正确的打“”,错误的打“”.(1)相关关系的两个变量是非确定性关系.()(2)利用散点图可以直观判断两个变量的关系是否可以用线性关系表示.()(3)只有两个变量有相关关系,所得到的回归模型才有预测价值.()(4)对于分类变量X与Y,统计量2的值越小,“X与Y有关联”的把握程度越大.()(5)通过回归方程y=bx+a可以估计和观测变量的取值和变化趋势.(),-9-,2,3,4,1,5,2.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关,答案,解析,-10-,2,3,4,1,5,3.(2015福建,理4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y=bx+a,其中b=0.76,a=-b.据此估计,该社区一户年收入为15万元家庭的年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元,答案,解析,-11-,2,3,4,1,5,3.(2015福建,理4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:A.11.4万元B.11.8万元C.12.0万元D.12.2万元,-12-,2,3,4,1,5,4.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.,答案,解析,-13-,2,3,4,1,5,5.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是的(填“有关”或“无关”).,答案,解析,-14-,2,3,4,1,5,自测点评1.散点图上的点大致分布在某条直线附近,整体上呈线性分布时,两个变量相关关系越强.2.2越大,“X与Y有关联”的把握程度越大.3.注意回归分析时对应的结果均是估计值,不要误认为是真实值;对于独立性检验的结论需要在概率意义下来理解,避免在现实生活中错误应用.4.要理解回归直线方程中的参数是用最小二乘法得出的,目的是使距离的平方和最小,不是看具体某一个距离的大小,这样使用求平方和也避免了讨论绝对值和正负问题.,-15-,考点1,考点2,考点3,知识方法,易错易混,考点1相关关系的判断例1(1)对变量x,y有观测数据(xi,yi)(i=1,2,10),得散点图;对变量u,v有观测数据(ui,vi)(i=1,2,10),得散点图,由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关,答案,解析,-16-,考点1,考点2,考点3,知识方法,易错易混,(2)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:则哪位同学的试验结果体现A,B两变量有更强的线性相关性()A.甲B.乙C.丙D.丁,答案,解析,-17-,考点1,考点2,考点3,知识方法,易错易混,思考:如何判断两个变量有无相关关系?解题心得:判断两个变量有无相关关系有两个方法:一是根据散点图,具有很强的直观性,直接得出两个变量是正相关或负相关;二是计算相关系数法,这种方法能比较准确地反映相关程度,相关系数的绝对值越接近1,相关性就越强,相关系数就是描述相关性强弱的.,-18-,考点1,考点2,考点3,知识方法,易错易混,对点训练1(1)对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2r40r3r1B.r4r20r1r3C.r4r20r3r1D.r2r40r16.635,所以在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.,-30-,考点1,考点2,考点3,知识方法,易错易混,思考:独立性检验得出的结论是什么?它对我们日常生活有什么帮助?,解题心得:独立性检验就是考察两个分类变量是否有关系,利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测,并能较为准确地给出这种判断的可信度;具体做法是根据公式,计算2,2值越大,说明“两个变量有关系”的可能性越大.,-31-,考点1,考点2,考点3,知识方法,易错易混,对点训练3某中学对“学生性别和是否喜欢看NBA比赛”作了一次调查,其中男生人数是女生人数的2倍,男生喜欢看NBA的人数占男生人数的,女生喜欢看NBA的人数占女生人数的,(1)若被调查的男生人数为n,根据题意建立一个22列联表;(2)若在犯错误的概率不超过0.05的前提下认为是否喜欢看NBA和性别有关,求男生至少有多少人?,-32-,考点1,考点2,考点3,知识方法,易错易混,解:(1)由已知得:,-33-,考点1,考点2,考点3,知识方法,易错易混,-34-,考点1,考点2,考点3,知识方法,易错易混,1.求回归方程,关键在于正确求出系数a,b,由于a,b的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为b,常数项为a,这与一次函数的习惯表示不同.)2.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.3.根据2的值可以判断两个分类变量有关的可信程度,并用来指导科研和生活实际.,-35-,考点1,考点2,考点3,知识方法,易错易混,1.相关关系与函数关系的区别相关关系与函数关系不同,函数关系中的两个变量间是一种确定性关系.例如正方形面积S与边长x之间的关系S=x2就是函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论