英文-无机纳米材料光解水ppt课件_第1页
英文-无机纳米材料光解水ppt课件_第2页
英文-无机纳米材料光解水ppt课件_第3页
英文-无机纳米材料光解水ppt课件_第4页
英文-无机纳米材料光解水ppt课件_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FrankE.OsterlohUniversityofCalifornia,DavisDepartmentofChemistry,Inorganicnanostructuresforphotoelectrochemicalandphotocatalyticwatersplitting,Contents,Conclusionandoutlook,4,ThesolarenergyreceivedontheEarthssurfacemeetscurrentandfuturehumanenergydemand.,carbonfreeenergytechnology,1Introduction,photovoltaiccellsThesolarenergycanbeconvertedintoelectricitywithupto43.5%efficiency.Thesecellsaremoreexpensivethanvirtuallyfreecoal.Electricityisdifficulttostoreandtodistributeoverlongdistances.,1Introduction,Convertingthephotochemicalenergydirectlyintofuel:H2O1/2O2(g)+H2(g);G=+237kJ/molSeveralwaystofacilitatereaction:PhotovoltaiccellpluselectrolyzerThermochemicalmethods,etc.Themosteconomicalones:Photoelectrosyntheticcells(PECs)Suspendedphotocatalysts,ThebestperformingphotoelectrochemicaldevicesknowntodayareTandemcells.acombinationoftwoormoresemiconductorsconnectedinseriesSemiconductorswithsmallerbandgapscanbeused,canabsorbagreaterfractionofthesolarspectrum,Photoelectrochemicaldevices,Photoelectrochemicaldevices,Efficienciesbetween12.4%andover18%havebeenachieved,i.e.abouthalfofthetheoreticalefficiencylimitforthesedevices.Buttheperformancecannotbesustained.Thephotoelectrodematerialsarenotstableunderoperatingconditionsandundergophotocorrosion.SimilarstabilityproblemsexistformostothervisiblelightabsorbingIIVI,IIIV,andgroup14elementsemiconductors.,Photoelectrochemicaldevices,threemainstrategies,1,Coatconventionalphotovoltaiccellswithcocatalystsforwatersplittingorwithprotectinglayerstoinhibitphotocorrosion,2,Developmentofnewmetaloxidematerialsthatcombinesuitablepropertiesforphotoelectrochemicalwatersplitting,3,Exploitscalinglawsandspecificeffectsatthenanoscaletoenhancetheefficiencyofexistingsemiconductorsandmetaloxides,Briefhistoryofnanoscalephotoelectrochemistryandphotocatalysis,Modernnanoscience:onlyabout40yearsold,beganin1974withDinglesdiscoveryofquantumsizeeffectsinthinfilmsPhotoelectrochemistry:startedin1955withBrattainselectrochemicalstudiesongermaniumelectrolytejunctionsWaterphotoelectrolysisatilluminatedTiO2electrodes:in1971byFujishimaandHondasuspendedsemiconductorparticles:Barddemonstratedthephotocatalyticeffectsphotochemicaldiodes:ArthurNozikformulatedtheconcept,PhotoelectrochemicalDiode,Theonlyfourknownnanoscalephotocatalystsforoverallwatersplitting,Nanostructuredmaterials,Electrodefunctions:waterreductionandoxidation,lightabsorption,chargeseparation,chargetransportAdjustingthenanoscalemorphologyofthephotoelectrodecanimprovesomeoftheseelectrodefunctions,butatthesameitdiminishesothers.Therefore,asystematicoptimizationofphotoelectrodesrequiresawholesystemapproachthatconsidersbothpositiveandnegativeeffectsofnanoscaling.,ShortenedcarriercollectionpathwaysImprovedlightdistributionQuantumsizeconfinementPotentialdeterminingions(PDI)Surfacearea-enhancedchargetransferMultipleexcitongeneration,Advantages,1Shortenedcarriercollectionpathways,ThefreediffusionlengthLdependsonthecarrierdiffusionconstantDandthecarrierlifetimetandadimensionalityfactor.L2=qDtForintrinsicsemiconductors,usuallyLeLh.Foroptimumcollectionofbothcarriertypesatthebackcontact,thesemiconductorfilmthicknessdhastobeinthesamerangeasLeandLh.,d:filmorparticlethickness;Le:electrondiffusionlength;Lh:holediffusionlength.Suspendedparticlesrequirebothelectronsandholestobecollectedatthescelectrolyteinterface,2Improvedlightdistribution,Theabilitytoabsorblight:LambertBeerlawThewavelength-dependentabsorptioncoefficientThelightpenetrationdepth-1referstothedistanceafterwhichthelightintensityisreducedto1/eoftheoriginalvalue.Surface-structuringonthemicro-ornanoscalecanincreasethedegreeofhorizontallightdistributionvialightscattering.Lightscatteringismaximalinparticlesuspensions.,Toensure90%absorptionoftheincidentlight,thefilmthicknessmustbe2.3timesthevalueof-1,3Quantumsizeconfinement,Thequantumsizeeffectdependsalsoonthematerialandthenanocrystalshape.Withincreasingthebandgap,theconductionbandedgeshiftstomorereducingandthevalencebandtomoreoxidizingpotentials.FromMarcusGerischertheoryitisexpectedthatthisincreaseinthermodynamicdrivingforceincreasestheratesforinterfacialchargetransferandwaterelectrolysis.Indeed,thiscanbeexperimentallyobservedforchargetransferacrosssolidsolidinterfaces.,Quantumsizeeffectinnanocrystals,4Potentialdeterminingions(PDI),Theeffectofpotentialdeterminingionsontheinterfacialenergeticsiswellknown.Duetothesmallthicknessofnanostructures,externalelectricfieldscanreachintothenanomaterialinteriorandmodifythelocalenergeticstructure.Thus,thebandedgepotentialsofnanomaterials,andresultingfunctions,erfacialchargetransfercanbecontrolledwithPDIs.,EffectofPDIsonnanocrystalenergetics,5Surfacearea-enhancedchargetransfer,Thelargerspecificsurfaceareaofnanomaterialspromoteschargetransferacrossthematerialinterfaces(solidsolidandsolidliquid),allowingwaterredoxreactionstooccuratrelativelylowcurrentdensitiesand,correspondingly,lowoverpotentials.Increasesofsurfaceareareducetheneedforhighlyactive,andoftenexpensivecocatalysts,basedonIr,RhorPt.,6Multipleexcitongeneration,Thealteredelectronicstructureofstronglysize-confinednanocrystalsgivesrisetomultipleexcitongeneration(MEG),i.e.theformationofseveral(n)electronholepairsafterabsorptionofonephotonwithanenergyntimesofthebandgapofthedot.,Theeffecthasnotyetbeenappliedtowaterphotoelectrolysis.FutureMEGenhancedwatersplittingdeviceswilllikelybeTandemormulti-junctiondevices,becausetheindividualquantumdotscannotproduceasufficientpotentialforoverallwatersplitting.Thisisbecauseforefficientsolarenergyconversion,thebandgapsoftherelevantdotsneedtobeafractionoftheenergyofvisiblelightphotons(E=1.553.1eV).,Whilenanostructuringcanimprovethelightharvesting,chargetransport,kinetic,andenergeticparametersofphotoelectrosyntheticcells,italsohassignificantdisadvantagesthatcanleadtoreducedpowerconversionefficiencyandlowerdurabilityofdevices.,IncreasedsurfacerecombinationReducedspacechargelayerthicknessLowerabsorbedphotonfluxSlowinterparticlechargetransport,Disadvantages,1Increasedsurfacerecombination,Photogeneratedchargecarriersrecombinethroughradiativeornonradiativeprocessesinthebulkphaseofthesemiconductor,inthedepletionregion,oratdefectsatthesurface.,Innanostructuredsemiconductors,surfaceandinterfacialrecombinationratesareenhancedduetotheirlargerspecificinterfacialareas.Itmightbepossibletocontroltheselossesbyreducingsurfacedefectsthroughsurfacetreatments.Forexample,formacroscopicsiliconfilms,treatmentwithHFcansuppresssurfacerecombination.Analogoustreatmentswillhavetobedevelopedfornanomaterials.,2Reducedspacechargelayerthickness,Innanomaterials,carrierseparationismoredifficultthaninthebulk,becauseataveragedopingconcentrations(n0=1017cm-3)spacechargelayersarenoteffectiveonthenanoscale.Forsphericalnanoparticles,thespacechargelayerthicknesscannotexceedtheradiusoftheparticle,whichrestrainsthepossiblebarrierheightattheinterface.,Spacechargelayersinlargeandsmallparticles,Theabsenceofaninternalmechanismforchargeseparationalsoincreasese/hrecombination.Thus,additionalenergyisnecessarytoseparatethecharges.Thisisanalogoustoorganicphotovoltaiccells,whereahigherexcitonbindingenergyresultsfromthelowerdielectricconstantoforganicpolymers.,3Lowerabsorbedphotonflux,Asecondconsequenceoftheincreasedjunctionareainnanostructuredphotoelectrochemicalcellsislowerabsorbedflux(iflightscatteringisneglected).,AccordingtotheShockleydiodeequation:J0,reversesaturationcurrentofdiode;Jphot,photocurrent=photonfluxtimesxirradiatedarea;VOC,opencircuitvoltage.SinceJphotJ0,thevoltagedecreasesby0.059VforeverydecadicdecreaseofJphot(i.e.decadicincreaseofsurfaceroughness).Thisreducesthethermodynamicdrivingforceavailableforwaterelectrolysis.,4Slowinterparticlechargetransport,Innanocrystallinefilms,chargecarriersmovebydiffusioninsteadofdrift.Asaresult,chargetransportismuchslowerthaninthebulk,increasingthechancesforrecombinationandbackreactions.Theproblemofchargetransportovermacroscopicdistancecanbeentirelyavoidedwithnanoscalesuspendedcatalysts.,Ifthenanoparticlesarenotfusedtogether,additionalbarriersarisefrominterparticlechargetransport,whichoccursbythermallyactivatedhoppingandbyelectrontunneling.,Equivalentcircuitdiagram,Anusefulwaytoillustratetheeffectsofnanostructuringonphotoelectrosyntheticdevices.,Equivalentcircuitdiagram,Forananostructuredphotoelectrochemicalcell,thedecreaseinRSHcorrespondstotheleakagecurrentsJetandJT.IfthiscurrentexceedsthegenerationcurrentIL,waterelectrolysiswillcometoastop.ThedecreaseofRSduetothereductioninelectronholetransportresistancescanleadtoimprovedperformanceofananostructureddevice.Asthesemiconductorparticlesapproachthenanoscale,thereductionofthespacechargelayereffectivenessdiminishestherectifyingproperties.ThisalsocorrespondstoreductionofRSH.,Nanostructuredphotoelectrodematerials,Metaloxidesclosedshellsystems:TiO2andtitanates,ZnO,Niobates,WO3,Cu2O,BiVO4,etc.Metaloxideswithpartiallyfilledd-orbitals:Fe2O3,IrO2,MnO2,VO2,etc.Nitridesandsulfides:Metalnitrides,Metalchalcogenides.Maingroupelement:SiliconNanostructuredcocatalystsandplasmonicnanostructures:Carbonnitride,nanoparticlesascocatalysts,Pt/Pd/Rh/Ru,IrO2,Co-PiandCo-oxides,metalsulfides,Nanoparticlesforplasmoniceffects.,TiO2andtitanates,TypesofNanostructuredTiO2photoanodes,TiO2andtitanates,Underequalexperimentalconditions,thephotocurrentdensityfromwateroxidationincreasesingoingfromparticlestorodsandtobranchedrods,mainlyduetoimprovedelectrontransporttotheback-contactandimprovedholetransporttothesolidliquidinterface.,ZnO,ZnOislimitedbyalargebandgapthatpreventsvisiblelightabsorption,andbychemicalinstabilityunderbothanodicandcathodicbias.ZnOnanorodarrayafterelectrodepositionofCoPicatalyst,improvesthephotocurrentonsetpotentialby0.23V.,dxsystems,Metaloxideswithpartiallyfilledd-shellstypicallyexhibitlowe/hlifetimes.Inaddition,thefirstrowtransitionmetaloxidesalsosufferfromlowe/hmobilitytheyareclassifiedasMottinsulators.Intheory,bothproblemscanbeaddressedthroughnanoscalingandsodxsystemshavebeenintensivelystudiedasphotoelectrodes.ThebestknownmetaloxidehereisFe2O3,butreportsonimprovedphotocatalyticpropertieswithnano-MnO2andnano-IrO2haveappearedaswell.,Metalnitrides,Becausetheelectronegativityofnitrogenislowerthanthatofoxygen,metalnitridesarepronetoanodicphotocorrosion.However,theyhaveconsiderablepotentialasphotocathodes.W2Nnanowirearrays:FormedbynitridationofWO3Supportanodicphotocurrentsof0.2mAcm-2Butperformancerapidlydecaysduetoformationoftheoxides.ImprovedstabilitywasfoundforthemixedphaseW2NWO3,Metalchalcogenides,Metalchalcogenides,especiallythoseofthegroup12metals:quantumconfinementeffectsBecauseofphotocorrosion,metalchalcogenidenanocrystalsaremainlyusedforvisiblelightsensitizationofmetaloxidephotoelectrochemicalcells,andforbasicsciencestudiesonphotocatalyticwaterreduction,interfacialchargetransportandquantumconfinement.,Maingroupelementsandcompounds,Silicon:suitablebandgapandhighconductionbandedgeTocompensateforthelowerminoritycarrierdiffusionlengthofreagentgradesilicon,theelectrodesurfaceareaneedstobeincreasedaccordingly.Thisalsoallowsforthepossibilityoflessexpensivewaterreductioncocatalystwithlowerperatomactivity.Toincreasee/hseparationatthesiliconelectrolyteinterface,an+pjunctionwasadded,andPtnanoparticleswerechemicallydepositedattheSitipstoreducethekineticbarrierforprotonreduction.,Fabrication,morphology,andlightscatteringpropertiesofSiradialmicrowirearrayphotocathodes.,Carbonnitride,C3N4:consistsofgraphite-likelayersinwhichsomeofthecarbonatomsarereplacedbynitrogenatoms.,TEMimagesofporous(A)andbulkC3N4(B).,Carbonnitride,Thebandgapandphotocatalyticwatersplittingpropertiescanbeadjustedbycopolymerizationwithbarbituricacid,aminoborane,sulfur,orotherheteroatomsources.Basedonsurfacephotovoltagemeasurements,andphotoelectrochemistry,g-C3N4isann-typesemiconductorthatfunctionsasaweakphotoanodematerial.Thelowphotocurrentssuggestfaste/hrecombinationandslowchargetransport.Therefore,nanostructuringcanbeusefulforincreasingthespecificsurfaceofthecompoundanditsactivity.,Nanoparticlesascocatalysts,Watersplittingcocatalysts:Towardsmoreabundantandlessexpensiveelementsthataremoresuitableforlargescaleoperation.LowertheactivationbarrierforwaterredoxreactionsAssistine/hseparation.Pt/Pd/Rh/Ru,IrO2,3dmetaloxides,Co-PiandCo-oxides,Metalsulfides,Nanoparticlesascocatalysts,Aproblemofcocatalystsemiconductorinterfacesisthattheygeneraterecombinationsitesforchargecarries,therebydeterioratingphotoelectrochemicalperformance.However,thisnegativeeffectisgenerallyovercompensatedbyimprovedwaterredoxkinetics.,Nanoparticlesforplasmoniceffects,Nanoparticles:surfaceplasmonresonancetoboostvisiblelightabsorptionofphotoelectrodes.Fromincreasedelectricalfieldstrengthneartheparticle,andduetoenhancedlightscatteringthroughoutthephotoelectrode.Surfaceplasmonresonancescanimpactlightabsorptionandphotocurrentgenerationbyphotoelectrodes,butthatinsulatingcoatingsneedtobeemployedtosuppressenhancedchargetrapping,transfer,andrecombinationatthemetalsemiconductorinterface.,Conclusionandoutlook,Thenanoscalingapproach:improvetheperformanceofmetaloxidephotoanodematerialswithlowcarriermobilityandwithshortexcitedstatelifetimes.Forelectrocatalysts:increasetheelectroactivesurfaceareaandallowformoreefficientmaterialsuse.Forselectedmetalchalcogenides:thequantumsizeeffecthasbeenusefulforcontrollinginterfacialchargetransport,andinpromotingphotocatalyticprotonreduction.,Con

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论