统计物理的基本概念ppt课件_第1页
统计物理的基本概念ppt课件_第2页
统计物理的基本概念ppt课件_第3页
统计物理的基本概念ppt课件_第4页
统计物理的基本概念ppt课件_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13-1引言,宏观物体具有微观结构,是由大量的微观粒子(分子、原子等)所组成的。而这些微观粒子在不停地作无规则的运动-热运动。,宏观物体的物理特征正是建立在微观粒子热运动的基础上的。,第十三章,统计物理的基本概念,缺点:由于热力学理论不涉及物质的微观结构和粒子的运动,把物质看成是连续的,因此不能解释宏观性质的涨落。,热力学是研究物质热运动的宏观理论,它以热力学实验定律为基础,应用数学方法,通过逻辑推理和演绎,得出有关物质各种宏观性质之间的关系,以及宏观物理过程进行的方向和限度等方面的结论。,优点:具有很高的可靠性和普遍性;,缺点:由于对物质微观结构所做的往往只是简化的模型假设,因而所得到的理论结果往往只是近似的。,统计物理学是研究物质热运动的微观理论,它从“宏观物质系统是由大量微观粒子组成的”这一基本事实出发。认为物质的宏观性质是大量微观粒子运动的集体表现,根据微观粒子的行为来解释物质的宏观性质,认为宏观量是微观量的统计平均值。,优点:它可以把热力学的几个基本定律归结于一个基本的统计原理,阐明了热力学定律的统计意义;,热力学对热现象给出普遍而可靠的结果,可以用来验证微观理论的正确性;统计物理学则可以深入热现象的本质,使热力学的理论获得更深刻的意义,二者相辅相成。,二者的联系:,13-2相空间,粒子是指组成物质系统的基本单元。粒子的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述。如果粒子遵从量子力学的运动规律,对粒子运动状态的描述称为量子描述,称为量子态。,自由度为r的一个微观粒子的微观运动状态由2r个广义坐标和广义动量确定。,广义坐标:,广义动量:,一、粒子运动状态的经典描述,空间中任何一点代表力学体系中一个粒子的一个运动状态,这个点称为代表点。当粒子运动状态随时间改变时,代表点相应地在空间中移动,描画出一条轨迹。,由此2r个直角坐标构成的2r维空间称为空间。,空间:,微观粒子具有波粒二象性,根据不确定关系,微观粒子不可能同时有确定的动量和坐标,说明微观粒子的运动不是轨道运动。微观粒子的运动状态不是用坐标和动量来描述的。,二、粒子运动状态的量子典描述,根据不确定关系,微观粒子在某一方向上位置的不确定度与动量不确定度的乘积在数量级上最小等于普朗克常量。,因此,一个自由度为3的微观粒子在相空间的位置只能确定在大小为h3的空间内,称为一个相格。每一个相格对应微观粒子的一个量子态。,自由度为3的微观粒子需要6维相空间描述。相空间体积元,相空间体积元中的状态数(相格数)为,相空间体积元中的能量认为是相同的,故体积元中g个状态具有相同的能量,因此又可以说是简并的,g即为简并度。,13-3宏观态与微观态,宏观状态和微观状态的区别宏观状态:平衡状态下由一组参量表示如N、E、V(热力学)微观状态:每个微观粒子的运动状态(统计物理),1)全同粒子,2)近独立粒子,具有完全相同内禀属性(如质量、电荷和自旋)的同类微观粒子。,忽略粒子间的相互作用(没有势能只有动能),系统能量为单个粒子能量之和。,一、系统微观运动状态的经典描述,经典认为全同粒子是可以分辨的(因为经典粒子的运动是轨道运动,原则上是可以被跟踪的)。如果在含有多个全同粒子的系统中,将两个粒子的运动状态加以交换,交换前后,系统的力学运动状态是不同的。,这个变量来确定。,单个粒子的经典运动状态,由r个广义坐标和个广义动量来描述,当组成系统的N个粒子在某一r时刻的运动状态都确定时,也就确定了整个系统的在该时刻的运动状态。因此确定系统的微观运动状态需要,描述方式,一个粒子在某时刻的力学运动状态可以用空间中一个点来表示,由N个全同粒子组成的系统在某时刻的微观运动状态可以用空间中的N个点表示,那么如果交换两个代表点在空间的位置,相应的系统的微观状态是不同的。,微观粒子全同性原理:全同粒子是不可分辨的。在含有多个全同粒子的系统中,将任意两个全同粒子加以交换,不改变整个系统的微观状态。,对于不可分辨的全同粒子,确定由全同近独立粒子组成的系统的微观状态归结为确定每一个量子态上的粒子数。,二、系统微观运动状态的量子描述,1)玻色子与费米子,b)玻色子:自旋量子数为整数的基本粒子或复合粒子。如:光子、介子等。,a)费米子:自旋量子数为半整数的基本粒子或复合粒子。如:电子、质子、中子等。,微观粒子的分类,c)复合粒子的分类:凡是由玻色子构成的复合粒子是玻色子;由偶数个费米子构成的复合粒子是玻色子,由奇数个费米子构成的复合粒子是费米子。,玻耳兹曼系统、玻色系统、费米系统,玻耳兹曼系统:由可分辨的全同近独立粒子组成,且处在一个个体量子态上的粒子数不受限制的系统。,玻色系统:由不可分辨的全同近独立玻色粒子组成,不受泡利不相容原理的约束,即处在同一个个体量子态上的粒子数不受限制的系统。,费米系统:由不可分辨的全同近独立费米粒子组成,受泡利不相容原理的约束,即处在同一个个体量子态上的粒子数最多只能为1个粒子的系统。,例:设系统由两个粒子组成,粒子的个体量子态有3个,如果这两个粒子分属玻耳兹曼系统、玻色系统、费米系统时,试分别讨论系统各有哪些可能的微观状态?,对于玻尔兹曼系统可有9种不同的微观状态,对于玻色系统可以有6种不同的微观状态,对于费米系统可以有3个不同的微观状态,在确定N、E、V的宏观状态下,系统可能的微观状态是大量的。为了研究系统的宏观性质,没必要也不可能追究微观状态的复杂变化,只要知道一个宏观状态对应的微观状态数以及各个微观状态出现的概率,就可以用统计方法求微观量的统计平均值获得相应的宏观性质。因此,确定一个宏观状态对应的微观状态数以及各微观状态出现的概率是统计物理的根本问题。,13-4等概率原理热力学概率,对于处在平衡态的孤立系统,系统的各个可能的微观状态出现的概率是相等的。,因为大量的微观状态都可以满足具有同一确定N、E、V的宏观条件,没有理由认为哪一个状态出现的概率更大一些。这些微观状态应当是平权的。,一、等概率原理,等概率原理是统计物理学中的一个合理的基本假设。该原理不能从更基本的原理推出,也不能直接从实验上验证。它的正确性在于从它推出的各种结论与客观实际相符而得到肯定。,热力学概率是指一种宏观态对应的微观状态数。,在确定N、E、V的宏观状态下,系统可能的微观状态是大量的。,根据等概率原理,一种宏观状态对应的微观状态越多,则这种宏观状态出现的概率就越大。,二、热力学概率,对于确定的宏观状态下,粒子数按能级的排列方式,为上的粒子数,用符号表示数列,称为一个分布。,能级:,简并度:,粒子数:,三、分布Ni,显然,对于具有确定的N,E,V的宏观状态满足:,给定了一个分布,只能确定处在每一个能级上的粒子数,它与系统的微观状态(具体安排哪些粒子处于哪个状态)是两个性质不同的概念。,粒子可以分辨,若对粒子加以编号,对任一能级,个编了号的粒子占据能级上的个量子态时共有个占据方式。,同一个分布对于玻耳兹曼系统、玻色系统、费米系统给出的微观状态数显然是不同的,先讨论玻耳兹曼系统。,四、玻耳兹曼系统的微观状态数,玻耳兹曼系统的粒子可以分辨,交换粒子将给出系统不同的状态,将N个粒子交换,交换数是。,因为前面已考虑了同一能级上个粒子的交换,所以交换数应除以,所以,对于玻尔兹曼系统分布相应的微观状态数为:,我们得到了与一个分布相对应的系统的微观状态数。对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论